使用CNN的3D模型的风格化线条绘制

Mitsuhiro Uchida, S. Saito
{"title":"使用CNN的3D模型的风格化线条绘制","authors":"Mitsuhiro Uchida, S. Saito","doi":"10.1109/CW.2019.00015","DOIUrl":null,"url":null,"abstract":"Techniques to render 3D models like hand-drawings are often required. In this paper, we propose an approach that generates line-drawing with various styles by machine learning. We train two Convolutional neural networks (CNNs), of which one is a line extractor from the depth and normal images of a 3D object, and the other is a line thickness applicator. The following process to CNNs interprets the thickness of the lines as intensity to control properties of a line style. Using the obtained intensities, non-uniform line styled drawings are generated. The results show the efficiency of combining the machine learning method and the interpreter.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stylized Line Drawing of 3D Models using CNN\",\"authors\":\"Mitsuhiro Uchida, S. Saito\",\"doi\":\"10.1109/CW.2019.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Techniques to render 3D models like hand-drawings are often required. In this paper, we propose an approach that generates line-drawing with various styles by machine learning. We train two Convolutional neural networks (CNNs), of which one is a line extractor from the depth and normal images of a 3D object, and the other is a line thickness applicator. The following process to CNNs interprets the thickness of the lines as intensity to control properties of a line style. Using the obtained intensities, non-uniform line styled drawings are generated. The results show the efficiency of combining the machine learning method and the interpreter.\",\"PeriodicalId\":117409,\"journal\":{\"name\":\"2019 International Conference on Cyberworlds (CW)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2019.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通常需要像手绘这样的3D模型渲染技术。在本文中,我们提出了一种通过机器学习生成各种风格线条的方法。我们训练了两个卷积神经网络(cnn),其中一个是从3D物体的深度和法线图像中提取线条,另一个是线条厚度涂抹器。下面的过程cnn将线条的厚度解释为强度,以控制线条样式的属性。利用获得的强度,生成非均匀线条样式的绘图。结果表明了机器学习方法与解释器相结合的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stylized Line Drawing of 3D Models using CNN
Techniques to render 3D models like hand-drawings are often required. In this paper, we propose an approach that generates line-drawing with various styles by machine learning. We train two Convolutional neural networks (CNNs), of which one is a line extractor from the depth and normal images of a 3D object, and the other is a line thickness applicator. The following process to CNNs interprets the thickness of the lines as intensity to control properties of a line style. Using the obtained intensities, non-uniform line styled drawings are generated. The results show the efficiency of combining the machine learning method and the interpreter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-Based Human Factors Evaluation of Air Traffic Control Operators (ATCOs) for Optimal Training Multi-instance Cancelable Biometric System using Convolutional Neural Network How does Augmented Reality Improve the Play Experience in Current Augmented Reality Enhanced Smartphone Games? Detection of Humanoid Robot Design Preferences Using EEG and Eye Tracker Vulnerability of Adaptive Strategies of Keystroke Dynamics Based Authentication Against Different Attack Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1