{"title":"Twitter分类的特征选择","authors":"D. Ostrowski","doi":"10.1109/ICSC.2014.50","DOIUrl":null,"url":null,"abstract":"Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Feature Selection for Twitter Classification\",\"authors\":\"D. Ostrowski\",\"doi\":\"10.1109/ICSC.2014.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).