Twitter分类的特征选择

D. Ostrowski
{"title":"Twitter分类的特征选择","authors":"D. Ostrowski","doi":"10.1109/ICSC.2014.50","DOIUrl":null,"url":null,"abstract":"Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Feature Selection for Twitter Classification\",\"authors\":\"D. Ostrowski\",\"doi\":\"10.1109/ICSC.2014.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于twitter的消息在识别用于分类的特征方面提出了挑战。本文探讨了用于改进趋势检测和信息提取的过滤技术。从预过滤的源(Twitter)开始,我们将研究信息理论和基于自然语言处理(NLP)的技术作为分类预处理手段的应用。结果表明,这两种方法都允许在高度特质数据(Twitter)的分类中改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Selection for Twitter Classification
Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1