R. Martins, Marco Gomes, J. J. Almeida, P. Novais, P. Henriques
{"title":"基于情感分析的社交媒体仇恨言论分类","authors":"R. Martins, Marco Gomes, J. J. Almeida, P. Novais, P. Henriques","doi":"10.1109/BRACIS.2018.00019","DOIUrl":null,"url":null,"abstract":"In this paper, we examine methods to classify hate speech in social media. We aim to establish lexical baselines for this task by applying classification methods using a dataset annotated for this purpose. As features, our system uses Natural Language Processing (NLP) techniques in order to expand the original dataset with emotional information and provide it for machine learning classification. We obtain results of 80.56% accuracy in hate speech identification, which represents an increase of almost 100% from the original analysis used as a reference.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Hate Speech Classification in Social Media Using Emotional Analysis\",\"authors\":\"R. Martins, Marco Gomes, J. J. Almeida, P. Novais, P. Henriques\",\"doi\":\"10.1109/BRACIS.2018.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine methods to classify hate speech in social media. We aim to establish lexical baselines for this task by applying classification methods using a dataset annotated for this purpose. As features, our system uses Natural Language Processing (NLP) techniques in order to expand the original dataset with emotional information and provide it for machine learning classification. We obtain results of 80.56% accuracy in hate speech identification, which represents an increase of almost 100% from the original analysis used as a reference.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hate Speech Classification in Social Media Using Emotional Analysis
In this paper, we examine methods to classify hate speech in social media. We aim to establish lexical baselines for this task by applying classification methods using a dataset annotated for this purpose. As features, our system uses Natural Language Processing (NLP) techniques in order to expand the original dataset with emotional information and provide it for machine learning classification. We obtain results of 80.56% accuracy in hate speech identification, which represents an increase of almost 100% from the original analysis used as a reference.