通过机器学习和RGB航空图像预测油棕榈的氮含量

Kielvien Lourensius Eka Setia Putra, Fabian Surya Pramudya, A. A. Gunawan, Prasetyo Mimboro
{"title":"通过机器学习和RGB航空图像预测油棕榈的氮含量","authors":"Kielvien Lourensius Eka Setia Putra, Fabian Surya Pramudya, A. A. Gunawan, Prasetyo Mimboro","doi":"10.46338/ijetae0623_03","DOIUrl":null,"url":null,"abstract":"—Nitrogen is a crucial nutrient for the sustainable health and productivity of oil palm plantations. Accurate fertilization for Nitrogencan optimize production while reducing maintenance costs. This study investigates the relationship between various vegetation indices and oil palm Nitrogen content using aerial images. We employ and compare different machine learning algorithms to predict Nitrogen content in oil palms, utilizing RGB aerial images obtained from PT. Perkebunan Nusantara IV (PTPN IV) in North Sumatra. Twelve vegetation indices are assessed, considering the limited spectral information available from the aerial images. Our findings reveal that the random forest algorithm, when applied to Hue, Green Leaf Index, and Coloration Index, yields the highest prediction accuracy of 90.13%. Furthermore, the results demonstrate that machine learning algorithms can effectively overcome the limitations of near-infrared channel availability, allowing for the prediction of Nitrogen content using RGB aerial images as a proxy for chlorophyll absorption.","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Nitrogen Content in Oil Palms through Machine Learning and RGB Aerial Imagery\",\"authors\":\"Kielvien Lourensius Eka Setia Putra, Fabian Surya Pramudya, A. A. Gunawan, Prasetyo Mimboro\",\"doi\":\"10.46338/ijetae0623_03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Nitrogen is a crucial nutrient for the sustainable health and productivity of oil palm plantations. Accurate fertilization for Nitrogencan optimize production while reducing maintenance costs. This study investigates the relationship between various vegetation indices and oil palm Nitrogen content using aerial images. We employ and compare different machine learning algorithms to predict Nitrogen content in oil palms, utilizing RGB aerial images obtained from PT. Perkebunan Nusantara IV (PTPN IV) in North Sumatra. Twelve vegetation indices are assessed, considering the limited spectral information available from the aerial images. Our findings reveal that the random forest algorithm, when applied to Hue, Green Leaf Index, and Coloration Index, yields the highest prediction accuracy of 90.13%. Furthermore, the results demonstrate that machine learning algorithms can effectively overcome the limitations of near-infrared channel availability, allowing for the prediction of Nitrogen content using RGB aerial images as a proxy for chlorophyll absorption.\",\"PeriodicalId\":169403,\"journal\":{\"name\":\"International Journal of Emerging Technology and Advanced Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Technology and Advanced Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46338/ijetae0623_03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae0623_03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氮是油棕种植园持续健康和生产力的关键养分。精确的氮肥施肥可以优化产量,同时降低维护成本。利用航拍影像研究了油棕不同植被指数与氮素含量的关系。我们利用北苏门答腊岛PT. Perkebunan Nusantara IV (PTPN IV)获得的RGB航空图像,采用并比较了不同的机器学习算法来预测油棕的氮含量。考虑到航空影像提供的有限光谱信息,对12个植被指数进行了评估。我们的研究结果表明,随机森林算法在色相、绿叶指数和颜色指数上的预测准确率最高,达到90.13%。此外,结果表明,机器学习算法可以有效地克服近红外通道可用性的限制,允许使用RGB航空图像作为叶绿素吸收的代理来预测氮含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Nitrogen Content in Oil Palms through Machine Learning and RGB Aerial Imagery
—Nitrogen is a crucial nutrient for the sustainable health and productivity of oil palm plantations. Accurate fertilization for Nitrogencan optimize production while reducing maintenance costs. This study investigates the relationship between various vegetation indices and oil palm Nitrogen content using aerial images. We employ and compare different machine learning algorithms to predict Nitrogen content in oil palms, utilizing RGB aerial images obtained from PT. Perkebunan Nusantara IV (PTPN IV) in North Sumatra. Twelve vegetation indices are assessed, considering the limited spectral information available from the aerial images. Our findings reveal that the random forest algorithm, when applied to Hue, Green Leaf Index, and Coloration Index, yields the highest prediction accuracy of 90.13%. Furthermore, the results demonstrate that machine learning algorithms can effectively overcome the limitations of near-infrared channel availability, allowing for the prediction of Nitrogen content using RGB aerial images as a proxy for chlorophyll absorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Climate Change on Fish Species Classification Using Machine Learning and Deep Learning Algorithms Bibliometric Analysis of the Influence of Artificial Intelligence on the Development of Education Wireless IoT Networks Security and Lightweight Encryption Schemes- Survey Challenges of Requirements Engineering in Agile Projects: A Systematic Review From Data to Design: An IoT-Based Novel Solution for Combating Distracted Driving and Speeding Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1