住宅建筑能效评估的新型机器学习算法比较研究

Yusuf Sonmez, U. Guvenc, H. Kahraman, C. Yilmaz
{"title":"住宅建筑能效评估的新型机器学习算法比较研究","authors":"Yusuf Sonmez, U. Guvenc, H. Kahraman, C. Yilmaz","doi":"10.1109/SGCF.2015.7354915","DOIUrl":null,"url":null,"abstract":"This study aims to improve the energy performance of residential buildings. heating load (HL) and cooling load (CL) are considered as a measure of heating ventilation and air conditioning (HVAC) system in this process. In order to achive an effective estimation, hybrid machine learning algorithms including, artificial bee colony-based k-nearest neighbor (abc-knn), genetic algorithm-based knn (ga-knn), adaptive artificial neural network with genetic algorithm (ga-ann) and adaptive ann with artificial bee colony (abc-ann) are used. Results are compared classical knn and ann methods. Thence, relations between input and target parameters are defined and performance of well-known classical knn and ann is improved substantialy.","PeriodicalId":236483,"journal":{"name":"2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A comperative study on novel machine learning algorithms for estimation of energy performance of residential buildings\",\"authors\":\"Yusuf Sonmez, U. Guvenc, H. Kahraman, C. Yilmaz\",\"doi\":\"10.1109/SGCF.2015.7354915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to improve the energy performance of residential buildings. heating load (HL) and cooling load (CL) are considered as a measure of heating ventilation and air conditioning (HVAC) system in this process. In order to achive an effective estimation, hybrid machine learning algorithms including, artificial bee colony-based k-nearest neighbor (abc-knn), genetic algorithm-based knn (ga-knn), adaptive artificial neural network with genetic algorithm (ga-ann) and adaptive ann with artificial bee colony (abc-ann) are used. Results are compared classical knn and ann methods. Thence, relations between input and target parameters are defined and performance of well-known classical knn and ann is improved substantialy.\",\"PeriodicalId\":236483,\"journal\":{\"name\":\"2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGCF.2015.7354915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGCF.2015.7354915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本研究旨在提高住宅建筑的能源性能。在此过程中,热负荷(HL)和冷负荷(CL)被认为是暖通空调(HVAC)系统的衡量标准。为了实现有效的估计,采用了基于人工蜂群的k近邻算法(abc-knn)、基于遗传算法的knn算法(ga-knn)、基于遗传算法的自适应人工神经网络(ga-ann)和基于人工蜂群的自适应神经网络(abc-ann)等混合机器学习算法。结果比较了经典的已知和人工神经网络方法。在此基础上,定义了输入参数与目标参数之间的关系,大大提高了经典已知神经网络和人工神经网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comperative study on novel machine learning algorithms for estimation of energy performance of residential buildings
This study aims to improve the energy performance of residential buildings. heating load (HL) and cooling load (CL) are considered as a measure of heating ventilation and air conditioning (HVAC) system in this process. In order to achive an effective estimation, hybrid machine learning algorithms including, artificial bee colony-based k-nearest neighbor (abc-knn), genetic algorithm-based knn (ga-knn), adaptive artificial neural network with genetic algorithm (ga-ann) and adaptive ann with artificial bee colony (abc-ann) are used. Results are compared classical knn and ann methods. Thence, relations between input and target parameters are defined and performance of well-known classical knn and ann is improved substantialy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart energy aggregation network (SEAN): An advanced management system for using distributed energy resources in virtual power plant applications Optimal charging coordination of electric vehicles in unbalanced electrical distribution system considering vehicle-to-grid technology A smart grid integration platform developed for monitoring and management of energy systems A note on demand side load management by maximum power limited load shedding algorithm for smart grids 4G/LTE technology for smart grid communication infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1