探索智能手机的内存能量优化

Ran Duan, Mingsong Bi, C. Gniady
{"title":"探索智能手机的内存能量优化","authors":"Ran Duan, Mingsong Bi, C. Gniady","doi":"10.1109/IGCC.2011.6008591","DOIUrl":null,"url":null,"abstract":"Recent development of sophisticated smartphones has made them indispensable part of our everyday life. However, advances in battery technology cannot keep up with the demand for longer battery life. Subsequently, energy efficiency has become one of the most important factors in designing smartphones. Multitasking and better multimedia features in the mobile applications continuously push memory requirements further, making energy optimizations for memory critical. Mobile RAM is already optimized for energy efficiency at the hardware level. It also provides power state switching interfaces to the operating system which enables the OS level energy optimizations. Many RAM optimizations have been explored for computer systems and in this paper we explore their applicability to smartphone hardware. In addition, we apply those optimizations to the newly emerging Phase Change Memory and study their energy efficiency and performance. Finally, we propose a hybrid approach to take the advantage of both Mobile RAM and Phase Change Memory. Results show that our hybrid mechanism can save more than 98% of memory energy as compared to the standard smartphone system with negligible impact on user experience.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Exploring memory energy optimizations in smartphones\",\"authors\":\"Ran Duan, Mingsong Bi, C. Gniady\",\"doi\":\"10.1109/IGCC.2011.6008591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent development of sophisticated smartphones has made them indispensable part of our everyday life. However, advances in battery technology cannot keep up with the demand for longer battery life. Subsequently, energy efficiency has become one of the most important factors in designing smartphones. Multitasking and better multimedia features in the mobile applications continuously push memory requirements further, making energy optimizations for memory critical. Mobile RAM is already optimized for energy efficiency at the hardware level. It also provides power state switching interfaces to the operating system which enables the OS level energy optimizations. Many RAM optimizations have been explored for computer systems and in this paper we explore their applicability to smartphone hardware. In addition, we apply those optimizations to the newly emerging Phase Change Memory and study their energy efficiency and performance. Finally, we propose a hybrid approach to take the advantage of both Mobile RAM and Phase Change Memory. Results show that our hybrid mechanism can save more than 98% of memory energy as compared to the standard smartphone system with negligible impact on user experience.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

最近智能手机的发展使它们成为我们日常生活中不可或缺的一部分。然而,电池技术的进步跟不上对更长的电池寿命的需求。因此,能源效率成为设计智能手机的最重要因素之一。移动应用程序中的多任务处理和更好的多媒体功能不断推动内存需求,使内存的能量优化至关重要。移动RAM已经在硬件层面针对能效进行了优化。它还为操作系统提供电源状态切换接口,实现操作系统级别的能量优化。许多RAM优化已经探索了计算机系统,在本文中,我们探讨了它们在智能手机硬件上的适用性。此外,我们将这些优化应用于新兴的相变存储器,并研究了它们的能量效率和性能。最后,我们提出了一种混合方法来利用移动RAM和相变存储器的优势。结果表明,与标准智能手机系统相比,我们的混合机制可以节省98%以上的内存能量,对用户体验的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring memory energy optimizations in smartphones
Recent development of sophisticated smartphones has made them indispensable part of our everyday life. However, advances in battery technology cannot keep up with the demand for longer battery life. Subsequently, energy efficiency has become one of the most important factors in designing smartphones. Multitasking and better multimedia features in the mobile applications continuously push memory requirements further, making energy optimizations for memory critical. Mobile RAM is already optimized for energy efficiency at the hardware level. It also provides power state switching interfaces to the operating system which enables the OS level energy optimizations. Many RAM optimizations have been explored for computer systems and in this paper we explore their applicability to smartphone hardware. In addition, we apply those optimizations to the newly emerging Phase Change Memory and study their energy efficiency and performance. Finally, we propose a hybrid approach to take the advantage of both Mobile RAM and Phase Change Memory. Results show that our hybrid mechanism can save more than 98% of memory energy as compared to the standard smartphone system with negligible impact on user experience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VLSI testing and test power Leakage-aware Kalman filter for accurate temperature tracking Practical performance prediction under Dynamic Voltage Frequency Scaling CACM: Current-aware capacity management in consolidated server enclosures Gureen Game: An energy-efficient QoS control scheme for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1