一种完整的基于多cpu / fpga的自动驾驶汽车设计和原型方法:多目标检测和识别案例研究

Q. Cabanes, B. Senouci, A. Ramdane-Cherif
{"title":"一种完整的基于多cpu / fpga的自动驾驶汽车设计和原型方法:多目标检测和识别案例研究","authors":"Q. Cabanes, B. Senouci, A. Ramdane-Cherif","doi":"10.1109/ICAIIC.2019.8669047","DOIUrl":null,"url":null,"abstract":"Embedded smart systems are Hardware/Software (HW/SW) architectures integrated in new autonomous vehicles in order to increase their smartness. A key example of such applications are camera-based automatic parking systems. In this paper we introduce a fast prototyping perspective within a complete design methodology for these embedded smart systems. One of our main objective being to reduce development and prototyping time, compared to usual simulation approaches. Based on our previous work [1], a supervised machine learning approach, we propose a HW/SW algorithm implementation for objects detection and recognition around autonomous vehicles. We validate our real-time approach via a quick prototype on the top of a Multi-CPU/FPGA platform (ZYNQ). The main contribution of this current work is the definition of a complete design methodology for smart embedded vehicle applications which defines four main parts: specification & native software, hardware acceleration, machine learning software, and the real embedded system prototype. Toward a full automation of our methodology, several steps are already automated and presented in this work. Our hardware acceleration of point cloud-based data processing tasks is 300 times faster than a pure software implementation.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Complete Multi-CPU/FPGA-based Design and Prototyping Methodology for Autonomous Vehicles: Multiple Object Detection and Recognition Case Study\",\"authors\":\"Q. Cabanes, B. Senouci, A. Ramdane-Cherif\",\"doi\":\"10.1109/ICAIIC.2019.8669047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded smart systems are Hardware/Software (HW/SW) architectures integrated in new autonomous vehicles in order to increase their smartness. A key example of such applications are camera-based automatic parking systems. In this paper we introduce a fast prototyping perspective within a complete design methodology for these embedded smart systems. One of our main objective being to reduce development and prototyping time, compared to usual simulation approaches. Based on our previous work [1], a supervised machine learning approach, we propose a HW/SW algorithm implementation for objects detection and recognition around autonomous vehicles. We validate our real-time approach via a quick prototype on the top of a Multi-CPU/FPGA platform (ZYNQ). The main contribution of this current work is the definition of a complete design methodology for smart embedded vehicle applications which defines four main parts: specification & native software, hardware acceleration, machine learning software, and the real embedded system prototype. Toward a full automation of our methodology, several steps are already automated and presented in this work. Our hardware acceleration of point cloud-based data processing tasks is 300 times faster than a pure software implementation.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

嵌入式智能系统是集成在新型自动驾驶汽车中的硬件/软件(HW/SW)架构,以提高其智能。这类应用的一个关键例子是基于摄像头的自动停车系统。在本文中,我们在这些嵌入式智能系统的完整设计方法中介绍了快速原型设计的观点。与通常的模拟方法相比,我们的主要目标之一是减少开发和原型制作时间。基于我们之前的工作[1],一种监督机器学习方法,我们提出了一种用于自动驾驶汽车周围物体检测和识别的HW/SW算法实现。我们通过在多cpu /FPGA平台(ZYNQ)上的快速原型验证了我们的实时方法。当前这项工作的主要贡献是为智能嵌入式汽车应用定义了一个完整的设计方法,其中定义了四个主要部分:规范和本地软件、硬件加速、机器学习软件和真实的嵌入式系统原型。为了使我们的方法完全自动化,本工作中已经实现了几个步骤的自动化。我们基于点云的数据处理任务的硬件加速比纯软件实现快300倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Complete Multi-CPU/FPGA-based Design and Prototyping Methodology for Autonomous Vehicles: Multiple Object Detection and Recognition Case Study
Embedded smart systems are Hardware/Software (HW/SW) architectures integrated in new autonomous vehicles in order to increase their smartness. A key example of such applications are camera-based automatic parking systems. In this paper we introduce a fast prototyping perspective within a complete design methodology for these embedded smart systems. One of our main objective being to reduce development and prototyping time, compared to usual simulation approaches. Based on our previous work [1], a supervised machine learning approach, we propose a HW/SW algorithm implementation for objects detection and recognition around autonomous vehicles. We validate our real-time approach via a quick prototype on the top of a Multi-CPU/FPGA platform (ZYNQ). The main contribution of this current work is the definition of a complete design methodology for smart embedded vehicle applications which defines four main parts: specification & native software, hardware acceleration, machine learning software, and the real embedded system prototype. Toward a full automation of our methodology, several steps are already automated and presented in this work. Our hardware acceleration of point cloud-based data processing tasks is 300 times faster than a pure software implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1