基于编译器的WCET预测执行函数专门化

Kateryna Muts, H. Falk
{"title":"基于编译器的WCET预测执行函数专门化","authors":"Kateryna Muts, H. Falk","doi":"10.1145/3378678.3391879","DOIUrl":null,"url":null,"abstract":"The Worst-Case Execution Time (WCET) is one of the most important criteria of hard real-time systems. Many optimizations have been proposed to improve WCET of an embedded application at compile time. Moreover, since modern embedded systems must also satisfy the additional design criteria like, e.g., code size or energy consumption, more often the compiler's optimizations go towards multi-objective optimization problems. Evolutionary algorithms are the most widely used method to solve a multi-objective problem. In order to find the set of the best trade-offs between the objectives, any evolutionary algorithm requires extensive evaluations of the objective functions. Thus, considering WCET as an objective in a multi-objective problem is infeasible in many cases, because the WCET analysis at compile time can be very time-consuming. For this reason, we propose a method based on a machine learning technique to predict the values of WCET at compile time. A well-known compiler-based optimization, function specialization, is considered as a base for the proposed prediction model. A regression method is analyzed in terms of making WCET predictions as precise as possible performing function specialization.","PeriodicalId":383191,"journal":{"name":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compiler-based WCET prediction performing function specialization\",\"authors\":\"Kateryna Muts, H. Falk\",\"doi\":\"10.1145/3378678.3391879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Worst-Case Execution Time (WCET) is one of the most important criteria of hard real-time systems. Many optimizations have been proposed to improve WCET of an embedded application at compile time. Moreover, since modern embedded systems must also satisfy the additional design criteria like, e.g., code size or energy consumption, more often the compiler's optimizations go towards multi-objective optimization problems. Evolutionary algorithms are the most widely used method to solve a multi-objective problem. In order to find the set of the best trade-offs between the objectives, any evolutionary algorithm requires extensive evaluations of the objective functions. Thus, considering WCET as an objective in a multi-objective problem is infeasible in many cases, because the WCET analysis at compile time can be very time-consuming. For this reason, we propose a method based on a machine learning technique to predict the values of WCET at compile time. A well-known compiler-based optimization, function specialization, is considered as a base for the proposed prediction model. A regression method is analyzed in terms of making WCET predictions as precise as possible performing function specialization.\",\"PeriodicalId\":383191,\"journal\":{\"name\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378678.3391879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378678.3391879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最坏情况执行时间(WCET)是硬实时系统的重要指标之一。已经提出了许多优化来改进嵌入式应用程序在编译时的WCET。此外,由于现代嵌入式系统还必须满足额外的设计标准,例如代码大小或能耗,因此编译器的优化通常会朝着多目标优化问题发展。进化算法是解决多目标问题最广泛使用的方法。为了找到目标之间的最佳权衡集,任何进化算法都需要对目标函数进行广泛的评估。因此,在许多情况下,将WCET作为多目标问题中的一个目标是不可行的,因为在编译时对WCET进行分析可能非常耗时。因此,我们提出了一种基于机器学习技术的方法来预测编译时的WCET值。一个众所周知的基于编译器的优化,函数专门化,被认为是提出的预测模型的基础。从实现函数专门化使WCET预测尽可能精确的角度分析了回归方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compiler-based WCET prediction performing function specialization
The Worst-Case Execution Time (WCET) is one of the most important criteria of hard real-time systems. Many optimizations have been proposed to improve WCET of an embedded application at compile time. Moreover, since modern embedded systems must also satisfy the additional design criteria like, e.g., code size or energy consumption, more often the compiler's optimizations go towards multi-objective optimization problems. Evolutionary algorithms are the most widely used method to solve a multi-objective problem. In order to find the set of the best trade-offs between the objectives, any evolutionary algorithm requires extensive evaluations of the objective functions. Thus, considering WCET as an objective in a multi-objective problem is infeasible in many cases, because the WCET analysis at compile time can be very time-consuming. For this reason, we propose a method based on a machine learning technique to predict the values of WCET at compile time. A well-known compiler-based optimization, function specialization, is considered as a base for the proposed prediction model. A regression method is analyzed in terms of making WCET predictions as precise as possible performing function specialization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A secure hardware-software solution based on RISC-V, logic locking and microkernel Configuring loosely time-triggered wireless control software Analog implementation of arithmetic operations on real memristors Programming tensor cores from an image processing DSL Data-layout optimization based on memory-access-pattern analysis for source-code performance improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1