指数三重态损耗

Ē. Urtāns, A. Ņikitenko, Valters Vecins
{"title":"指数三重态损耗","authors":"Ē. Urtāns, A. Ņikitenko, Valters Vecins","doi":"10.1145/3388142.3388163","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel variant of the Triplet Loss function that converges faster and gives better results. This function can separate class instances homogeneously through the whole embedding space. With Exponential Triplet Loss function we also introduce a novel type of embedding space regularization Unit-Range and Unit-Bounce that utilizes euclidean space more efficiently and resembles features of the cosine distance. We also examined factors for choosing the best embedding vector size for specific embedding spaces. Finally, we also demonstrate how new function can train models for one-shot learning and re-identification tasks.","PeriodicalId":409298,"journal":{"name":"Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exponential triplet loss\",\"authors\":\"Ē. Urtāns, A. Ņikitenko, Valters Vecins\",\"doi\":\"10.1145/3388142.3388163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel variant of the Triplet Loss function that converges faster and gives better results. This function can separate class instances homogeneously through the whole embedding space. With Exponential Triplet Loss function we also introduce a novel type of embedding space regularization Unit-Range and Unit-Bounce that utilizes euclidean space more efficiently and resembles features of the cosine distance. We also examined factors for choosing the best embedding vector size for specific embedding spaces. Finally, we also demonstrate how new function can train models for one-shot learning and re-identification tasks.\",\"PeriodicalId\":409298,\"journal\":{\"name\":\"Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388142.3388163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388142.3388163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种新的三重损失函数的变体,它收敛速度更快,结果也更好。该函数可以通过整个嵌入空间均匀地分离类实例。利用指数三重态损失函数,我们还引入了一种新的嵌入空间正则化单元范围和单元反弹,它更有效地利用了欧几里德空间,并且类似于余弦距离的特征。我们还研究了为特定嵌入空间选择最佳嵌入向量大小的因素。最后,我们还演示了新函数如何训练模型进行一次性学习和重新识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exponential triplet loss
This paper introduces a novel variant of the Triplet Loss function that converges faster and gives better results. This function can separate class instances homogeneously through the whole embedding space. With Exponential Triplet Loss function we also introduce a novel type of embedding space regularization Unit-Range and Unit-Bounce that utilizes euclidean space more efficiently and resembles features of the cosine distance. We also examined factors for choosing the best embedding vector size for specific embedding spaces. Finally, we also demonstrate how new function can train models for one-shot learning and re-identification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for Intelligent Navigation Using Latent Dirichlet Allocation on Reddit Posts About Opiates Design of the base isolation system with artificial neural network models An Approach to Temporal Phase Classification on Videos of the Volleyball's Basic Reception Technique A Hybrid Model of Clustering and Neural Network Using Weather Conditions for Energy Management in Buildings Sentiment and Emotion Analyses for Malaysian Mobile Digital Payment Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1