噪声图像的组合边缘检测算法

S. Rital, A. Bretto, H. Cherifi, D. Aboutajdine
{"title":"噪声图像的组合边缘检测算法","authors":"S. Rital, A. Bretto, H. Cherifi, D. Aboutajdine","doi":"10.1109/VIPROM.2002.1026681","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm for edge detection in noisy images. First, an image adaptive neighborhood hypergraph (IANH) representation is computed. Next, a detection procedure based on hypergraph properties is used to classify hyperedges either as noise, edges or region. The application of this technique to noisy images has resulted in a considerable improvement in performance as compared to classical approaches.","PeriodicalId":223771,"journal":{"name":"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A combinatorial edge detection algorithm on noisy images\",\"authors\":\"S. Rital, A. Bretto, H. Cherifi, D. Aboutajdine\",\"doi\":\"10.1109/VIPROM.2002.1026681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an algorithm for edge detection in noisy images. First, an image adaptive neighborhood hypergraph (IANH) representation is computed. Next, a detection procedure based on hypergraph properties is used to classify hyperedges either as noise, edges or region. The application of this technique to noisy images has resulted in a considerable improvement in performance as compared to classical approaches.\",\"PeriodicalId\":223771,\"journal\":{\"name\":\"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIPROM.2002.1026681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIPROM.2002.1026681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种用于噪声图像边缘检测的算法。首先,计算图像自适应邻域超图(IANH)表示。接下来,使用基于超图属性的检测过程将超边分类为噪声、边缘或区域。与经典方法相比,将该技术应用于噪声图像的性能有了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combinatorial edge detection algorithm on noisy images
In this paper, we present an algorithm for edge detection in noisy images. First, an image adaptive neighborhood hypergraph (IANH) representation is computed. Next, a detection procedure based on hypergraph properties is used to classify hyperedges either as noise, edges or region. The application of this technique to noisy images has resulted in a considerable improvement in performance as compared to classical approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data formats in digital prepress technology Performance of the all-optical packet switch in the WAN and MAN networks Another generalisation of vector filters Multimedia application for teaching and learning telecommunication protocols Use of area-closing to improve granulometry performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1