基于非欧距离的扩散张量相似度改进脑纤维跟踪

Lei Ye, E. Hunsicker, Baihua Li, Diwei Zhou
{"title":"基于非欧距离的扩散张量相似度改进脑纤维跟踪","authors":"Lei Ye, E. Hunsicker, Baihua Li, Diwei Zhou","doi":"10.1109/IST48021.2019.9010570","DOIUrl":null,"url":null,"abstract":"Fibre tracking is a non-invasive technique based on Diffusion Tensor Imaging (DTI) that provides useful information about biological anatomy and connectivity. In this paper, we propose a new fibre tracking algorithm, named TAS (Tracking by Angle and Similarity), which is able to overcome the shortfalls of existing algorithms by considering not only the main diffusion directions, but also the similarity of diffusion tensors using non-Euclidean distances. Quantitative comparison is carried out through a collection of simulation experiments using statistics of diffusion tensor anisotropy and volume, and tracking errors. Fibre tracking in Corpus Callosum from a healthy human brain dataset is presented.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Fibre Tracking Improved by Diffusion Tensor Similarity using Non-Euclidean Distances\",\"authors\":\"Lei Ye, E. Hunsicker, Baihua Li, Diwei Zhou\",\"doi\":\"10.1109/IST48021.2019.9010570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibre tracking is a non-invasive technique based on Diffusion Tensor Imaging (DTI) that provides useful information about biological anatomy and connectivity. In this paper, we propose a new fibre tracking algorithm, named TAS (Tracking by Angle and Similarity), which is able to overcome the shortfalls of existing algorithms by considering not only the main diffusion directions, but also the similarity of diffusion tensors using non-Euclidean distances. Quantitative comparison is carried out through a collection of simulation experiments using statistics of diffusion tensor anisotropy and volume, and tracking errors. Fibre tracking in Corpus Callosum from a healthy human brain dataset is presented.\",\"PeriodicalId\":117219,\"journal\":{\"name\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST48021.2019.9010570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纤维跟踪是一种基于弥散张量成像(DTI)的非侵入性技术,可提供有关生物解剖和连接的有用信息。在本文中,我们提出了一种新的光纤跟踪算法,称为TAS (tracking by Angle and Similarity),它不仅考虑了主要的扩散方向,而且考虑了使用非欧几里得距离的扩散张量的相似性,从而克服了现有算法的不足。通过统计扩散张量的各向异性和体积,以及跟踪误差,收集仿真实验进行定量比较。介绍了健康人脑数据集胼胝体的纤维跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain Fibre Tracking Improved by Diffusion Tensor Similarity using Non-Euclidean Distances
Fibre tracking is a non-invasive technique based on Diffusion Tensor Imaging (DTI) that provides useful information about biological anatomy and connectivity. In this paper, we propose a new fibre tracking algorithm, named TAS (Tracking by Angle and Similarity), which is able to overcome the shortfalls of existing algorithms by considering not only the main diffusion directions, but also the similarity of diffusion tensors using non-Euclidean distances. Quantitative comparison is carried out through a collection of simulation experiments using statistics of diffusion tensor anisotropy and volume, and tracking errors. Fibre tracking in Corpus Callosum from a healthy human brain dataset is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Adversarially Enhanced Heatmaps for Aorta Segmentation in CTA Millimeter Wave Imaging of Surface Defects and Corrosion under Paint using V-band Reflectometer An Efficient Human Activity Recognition Framework Based on Wearable IMU Wrist Sensors Retinal Layers OCT Scans 3-D Segmentation Identifying Asthma genetic signature patterns by mining Gene Expression BIG Datasets using Image Filtering Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1