超越Web图:用导航结构图挖掘WWW的信息架构

Matthias Keller, M. Nussbaumer
{"title":"超越Web图:用导航结构图挖掘WWW的信息架构","authors":"Matthias Keller, M. Nussbaumer","doi":"10.1109/EIDWT.2011.23","DOIUrl":null,"url":null,"abstract":"Large Web sites contain a plethora of different menus and navigation aids, which implement systems of content organization as hierarchies, linear structures or matrices. Humans are able to decode the fine-grained content organization because they are aware of the different access methods provided by navigation systems and understand the higher-level information architecture. In contrast, current methods of link analysis cannot extract such a detailed model of the information architecture and are not able to recognize site boundaries and content hierarchies the way humans do. In this paper present a new approach of mining navigation systems that increases the precision of Web structure mining. Instead of analyzing the complete Web graph spanned by pages and hyperlinks, sub graphs called Navigation Structure Graphs (NSGs) are analyzed. A NSG represents the hyperlinks belonging to a certain navigation system. We demonstrate the capabilities of NSGs for analyzing the organization of Web sites and present our research on mining NSGs.","PeriodicalId":423797,"journal":{"name":"2011 International Conference on Emerging Intelligent Data and Web Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Beyond the Web Graph: Mining the Information Architecture of the WWW with Navigation Structure Graphs\",\"authors\":\"Matthias Keller, M. Nussbaumer\",\"doi\":\"10.1109/EIDWT.2011.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Web sites contain a plethora of different menus and navigation aids, which implement systems of content organization as hierarchies, linear structures or matrices. Humans are able to decode the fine-grained content organization because they are aware of the different access methods provided by navigation systems and understand the higher-level information architecture. In contrast, current methods of link analysis cannot extract such a detailed model of the information architecture and are not able to recognize site boundaries and content hierarchies the way humans do. In this paper present a new approach of mining navigation systems that increases the precision of Web structure mining. Instead of analyzing the complete Web graph spanned by pages and hyperlinks, sub graphs called Navigation Structure Graphs (NSGs) are analyzed. A NSG represents the hyperlinks belonging to a certain navigation system. We demonstrate the capabilities of NSGs for analyzing the organization of Web sites and present our research on mining NSGs.\",\"PeriodicalId\":423797,\"journal\":{\"name\":\"2011 International Conference on Emerging Intelligent Data and Web Technologies\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Emerging Intelligent Data and Web Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIDWT.2011.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Emerging Intelligent Data and Web Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIDWT.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

大型Web站点包含大量不同的菜单和导航辅助工具,它们将内容组织系统实现为层次结构、线性结构或矩阵。人类能够解码细粒度的内容组织,因为他们知道导航系统提供的不同访问方法,并且了解更高级的信息体系结构。相比之下,当前的链接分析方法无法提取如此详细的信息架构模型,也无法像人类那样识别站点边界和内容层次。本文提出了一种新的导航系统挖掘方法,提高了Web结构挖掘的精度。不是分析由页面和超链接组成的完整Web图,而是分析称为导航结构图(nsg)的子图。NSG代表属于某个导航系统的超链接。我们展示了nsg分析网站组织的能力,并介绍了我们在挖掘nsg方面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond the Web Graph: Mining the Information Architecture of the WWW with Navigation Structure Graphs
Large Web sites contain a plethora of different menus and navigation aids, which implement systems of content organization as hierarchies, linear structures or matrices. Humans are able to decode the fine-grained content organization because they are aware of the different access methods provided by navigation systems and understand the higher-level information architecture. In contrast, current methods of link analysis cannot extract such a detailed model of the information architecture and are not able to recognize site boundaries and content hierarchies the way humans do. In this paper present a new approach of mining navigation systems that increases the precision of Web structure mining. Instead of analyzing the complete Web graph spanned by pages and hyperlinks, sub graphs called Navigation Structure Graphs (NSGs) are analyzed. A NSG represents the hyperlinks belonging to a certain navigation system. We demonstrate the capabilities of NSGs for analyzing the organization of Web sites and present our research on mining NSGs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Approaches to Proportional Fairness A Taxonomy of Data Scheduling in Data Grids and Data Centers: Problems and Intelligent Resolution Techniques Awareness in P2P Groupware Systems: A Convergence of Contextual Computing, Social Media and Semantic Web Context-Aware Platform for Integrated Mobile Services Guiding B2B Integration of Business Processes and Services: A Process Model for SMEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1