{"title":"基于Neyman-Pearson准则的海事雷达神经网络检测器","authors":"Z. Baird, M. McDonald, S. Rajan, Simon J. Lee","doi":"10.23919/fusion49465.2021.9626944","DOIUrl":null,"url":null,"abstract":"A convolutional neural network (CNN) detector with fixed probability of false alarm (PFA) for application to non-coherent wide area surveillance (WAS) maritime radars is proposed. This detector is trained using a novel cost function-based on Neyman-Pearson (NP) criterion. The use of machine learning allows the detector to learn a complex non-linear model of sea clutter and obviates the need for specifying complex, likely intractable, target plus clutter statistical models. The NP-CNN is shown to perform better than a simple cell-averaging constant false alarm rate (CA-CFAR) statistical detector and a CNN trained using the cross-entropy cost function.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Neyman-Pearson Criterion-Based Neural Network Detector for Maritime Radar\",\"authors\":\"Z. Baird, M. McDonald, S. Rajan, Simon J. Lee\",\"doi\":\"10.23919/fusion49465.2021.9626944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A convolutional neural network (CNN) detector with fixed probability of false alarm (PFA) for application to non-coherent wide area surveillance (WAS) maritime radars is proposed. This detector is trained using a novel cost function-based on Neyman-Pearson (NP) criterion. The use of machine learning allows the detector to learn a complex non-linear model of sea clutter and obviates the need for specifying complex, likely intractable, target plus clutter statistical models. The NP-CNN is shown to perform better than a simple cell-averaging constant false alarm rate (CA-CFAR) statistical detector and a CNN trained using the cross-entropy cost function.\",\"PeriodicalId\":226850,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion49465.2021.9626944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Neyman-Pearson Criterion-Based Neural Network Detector for Maritime Radar
A convolutional neural network (CNN) detector with fixed probability of false alarm (PFA) for application to non-coherent wide area surveillance (WAS) maritime radars is proposed. This detector is trained using a novel cost function-based on Neyman-Pearson (NP) criterion. The use of machine learning allows the detector to learn a complex non-linear model of sea clutter and obviates the need for specifying complex, likely intractable, target plus clutter statistical models. The NP-CNN is shown to perform better than a simple cell-averaging constant false alarm rate (CA-CFAR) statistical detector and a CNN trained using the cross-entropy cost function.