{"title":"基于lora直连卫星物联网的上行传输概率函数:一个案例研究","authors":"Kai Vogelgesang, J. Fraire, H. Hermanns","doi":"10.1109/GLOBECOM46510.2021.9685152","DOIUrl":null,"url":null,"abstract":"Direct-to-Satellite IoT allows devices on the Earth surface to directly reach Low-Earth Orbit (LEO) satellites passing over them. Although an appealing approach towards a truly global IoT vision, scalability issues as well as highly dynamic topologies ask for dedicated protocol adaptations supported by novel models. This paper contributes to this research by introducing estimators and a transmission probability function to dynamically control the contending set of devices on a framed slotted Aloha model compatible with the LoRaWAN specification. In particular, we discuss techniques that account for particularities in the dynamics of sparse DtS-IoT constellations. Simulation analyses of a realistic case study show that >86% of the theoretical throughput is achievable in practice.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Uplink Transmission Probability Functions for LoRa-Based Direct-to-Satellite IoT: A Case Study\",\"authors\":\"Kai Vogelgesang, J. Fraire, H. Hermanns\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct-to-Satellite IoT allows devices on the Earth surface to directly reach Low-Earth Orbit (LEO) satellites passing over them. Although an appealing approach towards a truly global IoT vision, scalability issues as well as highly dynamic topologies ask for dedicated protocol adaptations supported by novel models. This paper contributes to this research by introducing estimators and a transmission probability function to dynamically control the contending set of devices on a framed slotted Aloha model compatible with the LoRaWAN specification. In particular, we discuss techniques that account for particularities in the dynamics of sparse DtS-IoT constellations. Simulation analyses of a realistic case study show that >86% of the theoretical throughput is achievable in practice.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uplink Transmission Probability Functions for LoRa-Based Direct-to-Satellite IoT: A Case Study
Direct-to-Satellite IoT allows devices on the Earth surface to directly reach Low-Earth Orbit (LEO) satellites passing over them. Although an appealing approach towards a truly global IoT vision, scalability issues as well as highly dynamic topologies ask for dedicated protocol adaptations supported by novel models. This paper contributes to this research by introducing estimators and a transmission probability function to dynamically control the contending set of devices on a framed slotted Aloha model compatible with the LoRaWAN specification. In particular, we discuss techniques that account for particularities in the dynamics of sparse DtS-IoT constellations. Simulation analyses of a realistic case study show that >86% of the theoretical throughput is achievable in practice.