大规模汉明距离查询处理

A. Liu, Ke Shen, E. Torng
{"title":"大规模汉明距离查询处理","authors":"A. Liu, Ke Shen, E. Torng","doi":"10.1109/ICDE.2011.5767831","DOIUrl":null,"url":null,"abstract":"Hamming distance has been widely used in many application domains, such as near-duplicate detection and pattern recognition. We study Hamming distance range query problems, where the goal is to find all strings in a database that are within a Hamming distance bound k from a query string. If k is fixed, we have a static Hamming distance range query problem. If k is part of the input, we have a dynamic Hamming distance range query problem. For the static problem, the prior art uses lots of memory due to its aggressive replication of the database. For the dynamic range query problem, as far as we know, there is no space and time efficient solution for arbitrary databases. In this paper, we first propose a static Hamming distance range query algorithm called HEngines, which addresses the space issue in prior art by dynamically expanding the query on the fly. We then propose a dynamic Hamming distance range query algorithm called HEngined, which addresses the limitation in prior art using a divide-and-conquer strategy. We implemented our algorithms and conducted side-by-side comparisons on large real-world and synthetic datasets. In our experiments, HEngines uses 4.65 times less space and processes queries 16% faster than the prior art, and HEngined processes queries 46 times faster than linear scan while using only 1.7 times more space.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Large scale Hamming distance query processing\",\"authors\":\"A. Liu, Ke Shen, E. Torng\",\"doi\":\"10.1109/ICDE.2011.5767831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hamming distance has been widely used in many application domains, such as near-duplicate detection and pattern recognition. We study Hamming distance range query problems, where the goal is to find all strings in a database that are within a Hamming distance bound k from a query string. If k is fixed, we have a static Hamming distance range query problem. If k is part of the input, we have a dynamic Hamming distance range query problem. For the static problem, the prior art uses lots of memory due to its aggressive replication of the database. For the dynamic range query problem, as far as we know, there is no space and time efficient solution for arbitrary databases. In this paper, we first propose a static Hamming distance range query algorithm called HEngines, which addresses the space issue in prior art by dynamically expanding the query on the fly. We then propose a dynamic Hamming distance range query algorithm called HEngined, which addresses the limitation in prior art using a divide-and-conquer strategy. We implemented our algorithms and conducted side-by-side comparisons on large real-world and synthetic datasets. In our experiments, HEngines uses 4.65 times less space and processes queries 16% faster than the prior art, and HEngined processes queries 46 times faster than linear scan while using only 1.7 times more space.\",\"PeriodicalId\":332374,\"journal\":{\"name\":\"2011 IEEE 27th International Conference on Data Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 27th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2011.5767831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

汉明距离在近重复检测、模式识别等领域得到了广泛的应用。我们研究汉明距离范围查询问题,其目标是找到数据库中与查询字符串在汉明距离k范围内的所有字符串。如果k是固定的,我们有一个静态汉明距离范围查询问题。如果k是输入的一部分,我们有一个动态汉明距离范围查询问题。对于静态问题,现有技术由于其对数据库的主动复制而使用大量内存。对于动态范围查询问题,据我们所知,没有针对任意数据库的空间和时间高效的解决方案。在本文中,我们首先提出了一种名为HEngines的静态汉明距离范围查询算法,该算法通过动态扩展查询来解决现有技术中的空间问题。然后,我们提出了一种称为hengine的动态汉明距离范围查询算法,该算法使用分而治之的策略解决了现有技术中的限制。我们实现了我们的算法,并在大型真实世界和合成数据集上进行了并排比较。在我们的实验中,HEngines使用的空间比现有技术少4.65倍,处理查询的速度比现有技术快16%,而hengine处理查询的速度比线性扫描快46倍,而只使用1.7倍的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large scale Hamming distance query processing
Hamming distance has been widely used in many application domains, such as near-duplicate detection and pattern recognition. We study Hamming distance range query problems, where the goal is to find all strings in a database that are within a Hamming distance bound k from a query string. If k is fixed, we have a static Hamming distance range query problem. If k is part of the input, we have a dynamic Hamming distance range query problem. For the static problem, the prior art uses lots of memory due to its aggressive replication of the database. For the dynamic range query problem, as far as we know, there is no space and time efficient solution for arbitrary databases. In this paper, we first propose a static Hamming distance range query algorithm called HEngines, which addresses the space issue in prior art by dynamically expanding the query on the fly. We then propose a dynamic Hamming distance range query algorithm called HEngined, which addresses the limitation in prior art using a divide-and-conquer strategy. We implemented our algorithms and conducted side-by-side comparisons on large real-world and synthetic datasets. In our experiments, HEngines uses 4.65 times less space and processes queries 16% faster than the prior art, and HEngined processes queries 46 times faster than linear scan while using only 1.7 times more space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced search, visualization and tagging of sensor metadata Bidirectional mining of non-redundant recurrent rules from a sequence database Web-scale information extraction with vertex Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins Dynamic prioritization of database queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1