使用长短期记忆的心音自动分类

Bilal Ahmad, Faiq Ahmad Khan, Kaleem Nawaz Khan, Muhammad Salman Khan
{"title":"使用长短期记忆的心音自动分类","authors":"Bilal Ahmad, Faiq Ahmad Khan, Kaleem Nawaz Khan, Muhammad Salman Khan","doi":"10.1109/ICOSST53930.2021.9683975","DOIUrl":null,"url":null,"abstract":"Heart diseases are serious and must be detected early using an auscultation examination. To explore and diagnose heart problems, several signal processing and machine learning approaches are used. From a Phonocardiogram (PCG) signal, the heart sound (HS) can be categorized into normal and abnormal. This paper presents an improvedcomputer-aidedtechniquefor classification of HS using long short-term memory (LSTM)deployed withdifferent time and frequency domain features, i.e., discrete wavelet transform (DWT) and Mel-frequency cepstral coefficients (MFCCs). The overall score, accuracy, sensitivity, and specificity of the LSTM classifier are calculated for the performance evaluation. With the proposed set of experimentsthe classification algorithm achieved a final score of 90.04% (Accuracy 90%, Sensitivity 92.30%, and Specificity 87.69%).","PeriodicalId":325357,"journal":{"name":"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Classification of Heart Sounds Using Long Short-Term Memory\",\"authors\":\"Bilal Ahmad, Faiq Ahmad Khan, Kaleem Nawaz Khan, Muhammad Salman Khan\",\"doi\":\"10.1109/ICOSST53930.2021.9683975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart diseases are serious and must be detected early using an auscultation examination. To explore and diagnose heart problems, several signal processing and machine learning approaches are used. From a Phonocardiogram (PCG) signal, the heart sound (HS) can be categorized into normal and abnormal. This paper presents an improvedcomputer-aidedtechniquefor classification of HS using long short-term memory (LSTM)deployed withdifferent time and frequency domain features, i.e., discrete wavelet transform (DWT) and Mel-frequency cepstral coefficients (MFCCs). The overall score, accuracy, sensitivity, and specificity of the LSTM classifier are calculated for the performance evaluation. With the proposed set of experimentsthe classification algorithm achieved a final score of 90.04% (Accuracy 90%, Sensitivity 92.30%, and Specificity 87.69%).\",\"PeriodicalId\":325357,\"journal\":{\"name\":\"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSST53930.2021.9683975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSST53930.2021.9683975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

心脏病很严重,必须通过听诊检查及早发现。为了探索和诊断心脏问题,使用了几种信号处理和机器学习方法。从心音图(PCG)信号可以将心音分为正常和异常。本文提出了一种改进的计算机辅助HS分类技术,利用具有不同时频域特征的长短期记忆(LSTM),即离散小波变换(DWT)和mel -频率倒谱系数(MFCCs)。计算LSTM分类器的总体得分、准确性、灵敏度和特异性来进行性能评估。在该实验集下,分类算法的最终得分为90.04%(准确率90%,灵敏度92.30%,特异性87.69%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Classification of Heart Sounds Using Long Short-Term Memory
Heart diseases are serious and must be detected early using an auscultation examination. To explore and diagnose heart problems, several signal processing and machine learning approaches are used. From a Phonocardiogram (PCG) signal, the heart sound (HS) can be categorized into normal and abnormal. This paper presents an improvedcomputer-aidedtechniquefor classification of HS using long short-term memory (LSTM)deployed withdifferent time and frequency domain features, i.e., discrete wavelet transform (DWT) and Mel-frequency cepstral coefficients (MFCCs). The overall score, accuracy, sensitivity, and specificity of the LSTM classifier are calculated for the performance evaluation. With the proposed set of experimentsthe classification algorithm achieved a final score of 90.04% (Accuracy 90%, Sensitivity 92.30%, and Specificity 87.69%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Question Answer Re-Ranking using Syntactic Relationship IoT based Smart Fan Dimmer with suppressed Humming Sound and Nonlinear Effect of Inverter Detection of Freezing of Gait in Parkinson's Disease by Squeeze-and-Excitation Convolutional Neural Network with Wearable Sensors A Bag-of-Features (BoF) Based Novel Framework for the Detection of COVID-19 An efficient rating system for players based on their position statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1