基于PSO-SVM的垃圾邮件主机分类

A. Enache, V. Sgârciu
{"title":"基于PSO-SVM的垃圾邮件主机分类","authors":"A. Enache, V. Sgârciu","doi":"10.1109/AQTR.2014.6857840","DOIUrl":null,"url":null,"abstract":"Search engines have become a de facto place to start information acquisition on the Internet. Sabotaging the quality of the results retrieved by search engines can lead users to doubt the search engine provider. Spam websites can serve as means of phishing. This paper shows a spam host detection approach that uses support vector machines(SVM) for classification. We create a parallel version of standard Particle Swarm Optimization(PSO) to determine free parameters of the SVM classifier and apply our proposed model to a content web spamming dataset, WEBSPAM-UK2011. Our implementation of the parallel PSO is constructed on a pool of threads and each thread executes tasks associated to a particle from the swarm. Experiments showed that our proposed model can achieve a higher accuracy than regular SVM and outperforms other classifiers (C4.5, Naive Bayes). Furthermore, parallel version of standard Particle Swam Optimization(PSO) can efficiently select parameters for SVM.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spam host classification using PSO-SVM\",\"authors\":\"A. Enache, V. Sgârciu\",\"doi\":\"10.1109/AQTR.2014.6857840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search engines have become a de facto place to start information acquisition on the Internet. Sabotaging the quality of the results retrieved by search engines can lead users to doubt the search engine provider. Spam websites can serve as means of phishing. This paper shows a spam host detection approach that uses support vector machines(SVM) for classification. We create a parallel version of standard Particle Swarm Optimization(PSO) to determine free parameters of the SVM classifier and apply our proposed model to a content web spamming dataset, WEBSPAM-UK2011. Our implementation of the parallel PSO is constructed on a pool of threads and each thread executes tasks associated to a particle from the swarm. Experiments showed that our proposed model can achieve a higher accuracy than regular SVM and outperforms other classifiers (C4.5, Naive Bayes). Furthermore, parallel version of standard Particle Swam Optimization(PSO) can efficiently select parameters for SVM.\",\"PeriodicalId\":297141,\"journal\":{\"name\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2014.6857840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

搜索引擎实际上已经成为在互联网上开始获取信息的地方。破坏搜索引擎检索结果的质量会导致用户怀疑搜索引擎提供商。垃圾网站可以作为网络钓鱼的手段。提出了一种基于支持向量机(SVM)的垃圾邮件主机检测方法。我们创建了一个并行版本的标准粒子群优化(PSO)来确定SVM分类器的自由参数,并将我们提出的模型应用于内容网络垃圾邮件数据集WEBSPAM-UK2011。我们的并行粒子群算法是在一个线程池上实现的,每个线程执行与群中的一个粒子相关的任务。实验表明,我们提出的模型可以达到比常规SVM更高的准确率,并且优于其他分类器(C4.5,朴素贝叶斯)。此外,并行版的标准粒子游优化算法(PSO)可以有效地选择支持向量机的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spam host classification using PSO-SVM
Search engines have become a de facto place to start information acquisition on the Internet. Sabotaging the quality of the results retrieved by search engines can lead users to doubt the search engine provider. Spam websites can serve as means of phishing. This paper shows a spam host detection approach that uses support vector machines(SVM) for classification. We create a parallel version of standard Particle Swarm Optimization(PSO) to determine free parameters of the SVM classifier and apply our proposed model to a content web spamming dataset, WEBSPAM-UK2011. Our implementation of the parallel PSO is constructed on a pool of threads and each thread executes tasks associated to a particle from the swarm. Experiments showed that our proposed model can achieve a higher accuracy than regular SVM and outperforms other classifiers (C4.5, Naive Bayes). Furthermore, parallel version of standard Particle Swam Optimization(PSO) can efficiently select parameters for SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Criteria for the localization of the monophase fault in medium voltage industrial networks with an isolated neutral Industrial application of micro geometrical cutting edge optimization for solid carbide boring tools Synthesis of train traffic control system with evolutionary computing Active disturbance rejection controller for a separation column DSS for operation of the lateral reservoirs during flood period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1