基于联合低秩和稀疏表示的高光谱图像分类

Mengmeng Zhang, Wei Li, Q. Du
{"title":"基于联合低秩和稀疏表示的高光谱图像分类","authors":"Mengmeng Zhang, Wei Li, Q. Du","doi":"10.1109/WHISPERS.2016.8071748","DOIUrl":null,"url":null,"abstract":"Representation-based classification has gained great interest recently. In this paper, we present a novel joint low rank and sparse representation-based classification (JLRSRC) method for hyperspectral imagery. For a testing set, JLRSRC seeks weight coefficients to represent a testing pixel as linear combination of atoms in an over-complete dictionary. Since the low rank model is capable of preserving global data structures of data while sparsity can select the discriminative neighbors in the feature space, the resulting representation is both representative and discriminative. Experimental results demonstrate the effectiveness of the proposed JLRSRC when compared with the traditional counterparts.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint low rank and sparse representation-based hyperspectral image classification\",\"authors\":\"Mengmeng Zhang, Wei Li, Q. Du\",\"doi\":\"10.1109/WHISPERS.2016.8071748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation-based classification has gained great interest recently. In this paper, we present a novel joint low rank and sparse representation-based classification (JLRSRC) method for hyperspectral imagery. For a testing set, JLRSRC seeks weight coefficients to represent a testing pixel as linear combination of atoms in an over-complete dictionary. Since the low rank model is capable of preserving global data structures of data while sparsity can select the discriminative neighbors in the feature space, the resulting representation is both representative and discriminative. Experimental results demonstrate the effectiveness of the proposed JLRSRC when compared with the traditional counterparts.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于表示的分类近年来引起了人们的极大兴趣。本文提出了一种基于联合低秩和稀疏表示的高光谱图像分类方法。对于测试集,JLRSRC寻求权重系数,将测试像素表示为过完备字典中原子的线性组合。由于低秩模型能够保留数据的全局数据结构,而稀疏模型能够在特征空间中选择有判别性的邻居,因此得到的表示既具有代表性又具有判别性。实验结果表明,与传统方法相比,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint low rank and sparse representation-based hyperspectral image classification
Representation-based classification has gained great interest recently. In this paper, we present a novel joint low rank and sparse representation-based classification (JLRSRC) method for hyperspectral imagery. For a testing set, JLRSRC seeks weight coefficients to represent a testing pixel as linear combination of atoms in an over-complete dictionary. Since the low rank model is capable of preserving global data structures of data while sparsity can select the discriminative neighbors in the feature space, the resulting representation is both representative and discriminative. Experimental results demonstrate the effectiveness of the proposed JLRSRC when compared with the traditional counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1