自适应n最佳列表手写单词识别

T. Kwok, M. Perrone
{"title":"自适应n最佳列表手写单词识别","authors":"T. Kwok, M. Perrone","doi":"10.1109/ICDAR.2001.953777","DOIUrl":null,"url":null,"abstract":"We investigate a novel method for adaptively improving the machine recognition of handwritten words by applying a k-nearest neighbor (k-NN) classifier to the N-best word-hypothesis lists generated by a writer-independent hidden Markov model (HMM). Each new N-best list from the HMM is compared to the N-best lists in the k-NN classifier. A decision module is used to select between the output of the HMM and the matches found by the k-NN classifier. The N-best list chosen by the decision module can be automatically added to the k-NN classifier if it is not already in the k-NN classifier. This dynamic update of the k-NN classifier enables the system to adapt to new data without retraining. On a writer-independent set of 1158 handwritten words, this method reduces the error rate by approximately 30%. This method is fast and memory-efficient, and lends itself to many interesting generalizations.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive N-best-list handwritten word recognition\",\"authors\":\"T. Kwok, M. Perrone\",\"doi\":\"10.1109/ICDAR.2001.953777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a novel method for adaptively improving the machine recognition of handwritten words by applying a k-nearest neighbor (k-NN) classifier to the N-best word-hypothesis lists generated by a writer-independent hidden Markov model (HMM). Each new N-best list from the HMM is compared to the N-best lists in the k-NN classifier. A decision module is used to select between the output of the HMM and the matches found by the k-NN classifier. The N-best list chosen by the decision module can be automatically added to the k-NN classifier if it is not already in the k-NN classifier. This dynamic update of the k-NN classifier enables the system to adapt to new data without retraining. On a writer-independent set of 1158 handwritten words, this method reduces the error rate by approximately 30%. This method is fast and memory-efficient, and lends itself to many interesting generalizations.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了一种自适应改进手写单词机器识别的新方法,该方法将k-最近邻(k-NN)分类器应用于由作者独立的隐马尔可夫模型(HMM)生成的n个最佳单词假设列表。HMM中的每个新的n个最佳列表与k-NN分类器中的n个最佳列表进行比较。决策模块用于在HMM的输出和k-NN分类器找到的匹配之间进行选择。决策模块选择的n个最佳列表如果不在k-NN分类器中,则可以自动添加到k-NN分类器中。这种k-NN分类器的动态更新使系统无需重新训练即可适应新数据。在1158个独立于写作者的手写单词集上,该方法将错误率降低了大约30%。这种方法速度快,内存效率高,可以进行许多有趣的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive N-best-list handwritten word recognition
We investigate a novel method for adaptively improving the machine recognition of handwritten words by applying a k-nearest neighbor (k-NN) classifier to the N-best word-hypothesis lists generated by a writer-independent hidden Markov model (HMM). Each new N-best list from the HMM is compared to the N-best lists in the k-NN classifier. A decision module is used to select between the output of the HMM and the matches found by the k-NN classifier. The N-best list chosen by the decision module can be automatically added to the k-NN classifier if it is not already in the k-NN classifier. This dynamic update of the k-NN classifier enables the system to adapt to new data without retraining. On a writer-independent set of 1158 handwritten words, this method reduces the error rate by approximately 30%. This method is fast and memory-efficient, and lends itself to many interesting generalizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1