边缘设备量化深度学习模型的补偿方法

Xiu-Zhi Chen, Jhen-Hao Li, Yen-Lin Chen, Chieh-Sheng Huang
{"title":"边缘设备量化深度学习模型的补偿方法","authors":"Xiu-Zhi Chen, Jhen-Hao Li, Yen-Lin Chen, Chieh-Sheng Huang","doi":"10.1109/ICCE-Taiwan58799.2023.10226977","DOIUrl":null,"url":null,"abstract":"Quantization is one of the optimization methods for developing deep learning models for edge devices. Through converting the floating-point into 8bit integer or even lower bitwidth, the model’s storage size can be reduced. As the rounding error exists during the quantization process, the model performance decreases. As a result, a method that can recover model performance is needed. In this research, a compensation method for improving the performance of quantized deep learning models is proposed, which make the quantized model can achieve equal or even better performance compared to the original floating-point model.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensation Method of Quantized Deep Learning Models for Edge Devices\",\"authors\":\"Xiu-Zhi Chen, Jhen-Hao Li, Yen-Lin Chen, Chieh-Sheng Huang\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantization is one of the optimization methods for developing deep learning models for edge devices. Through converting the floating-point into 8bit integer or even lower bitwidth, the model’s storage size can be reduced. As the rounding error exists during the quantization process, the model performance decreases. As a result, a method that can recover model performance is needed. In this research, a compensation method for improving the performance of quantized deep learning models is proposed, which make the quantized model can achieve equal or even better performance compared to the original floating-point model.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量化是开发边缘设备深度学习模型的优化方法之一。通过将浮点数转换为8位整数甚至更低的位宽,可以减小模型的存储大小。由于量化过程中存在舍入误差,导致模型性能下降。因此,需要一种能够恢复模型性能的方法。本研究提出了一种改进量化深度学习模型性能的补偿方法,使量化模型能够达到与原始浮点模型相当甚至更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compensation Method of Quantized Deep Learning Models for Edge Devices
Quantization is one of the optimization methods for developing deep learning models for edge devices. Through converting the floating-point into 8bit integer or even lower bitwidth, the model’s storage size can be reduced. As the rounding error exists during the quantization process, the model performance decreases. As a result, a method that can recover model performance is needed. In this research, a compensation method for improving the performance of quantized deep learning models is proposed, which make the quantized model can achieve equal or even better performance compared to the original floating-point model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1