交直流混合微电网硬件在环仿真工作台的实现

Donghan Shi, Chi Jin, Zhe Zhang, F. Choo, L. Koh, Peng Wang
{"title":"交直流混合微电网硬件在环仿真工作台的实现","authors":"Donghan Shi, Chi Jin, Zhe Zhang, F. Choo, L. Koh, Peng Wang","doi":"10.1109/ISGT.2017.8086052","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of a hardware-in-the-loop simulation (HIL) workbench for hybrid AC/DC micro grid. The hybrid AC/DC micro grid integrates both distributed sources and loads in AC/DC systems to respective links directly. For DC system, photovoltaic arrays with boost converter (PVBC), battery with bi-directional DC/DC converter and DC loads are covered. Diesel generator (DGs) and conventional AC loads are included in AC grid. Between AC and DC girds, a four-quadrant operating three phase converter is applied which can act as either an inverter or a rectifier to maintain power balance between two systems. The power units of this hybrid micro grid are simulated with Opal-RT real-time simulator while the control units are implemented on TI TMS320F28335 DSPs. This hardware-in-the-loop simulation workbench offers a good platform for system level control algorithm design and verification in micro grid. And it serves as a basis for future power-hardware-in-the-loop simulation (PHIL) with power stage involved.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementation of hardware-in-the-loop simulation workbench for a hybrid AC/DC microgrid\",\"authors\":\"Donghan Shi, Chi Jin, Zhe Zhang, F. Choo, L. Koh, Peng Wang\",\"doi\":\"10.1109/ISGT.2017.8086052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the implementation of a hardware-in-the-loop simulation (HIL) workbench for hybrid AC/DC micro grid. The hybrid AC/DC micro grid integrates both distributed sources and loads in AC/DC systems to respective links directly. For DC system, photovoltaic arrays with boost converter (PVBC), battery with bi-directional DC/DC converter and DC loads are covered. Diesel generator (DGs) and conventional AC loads are included in AC grid. Between AC and DC girds, a four-quadrant operating three phase converter is applied which can act as either an inverter or a rectifier to maintain power balance between two systems. The power units of this hybrid micro grid are simulated with Opal-RT real-time simulator while the control units are implemented on TI TMS320F28335 DSPs. This hardware-in-the-loop simulation workbench offers a good platform for system level control algorithm design and verification in micro grid. And it serves as a basis for future power-hardware-in-the-loop simulation (PHIL) with power stage involved.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了交直流混合微电网半在环仿真(HIL)工作台的实现。交直流混合微电网将交直流系统中的分布式电源和负载直接集成到各自的链路上。直流系统包括升压变换器光伏阵列、双向DC/DC变换器电池和直流负载。交流电网包括柴油发电机和常规交流负荷。在交流和直流电网之间,采用四象限三相工作变换器,它既可以作为逆变器,也可以作为整流器,以保持两个系统之间的功率平衡。采用Opal-RT实时仿真器对混合微电网的动力单元进行了仿真,控制单元在TI TMS320F28335 dsp上实现。该硬件在环仿真工作台为微电网系统级控制算法的设计与验证提供了良好的平台。为以后的功率级半实物仿真奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of hardware-in-the-loop simulation workbench for a hybrid AC/DC microgrid
This paper presents the implementation of a hardware-in-the-loop simulation (HIL) workbench for hybrid AC/DC micro grid. The hybrid AC/DC micro grid integrates both distributed sources and loads in AC/DC systems to respective links directly. For DC system, photovoltaic arrays with boost converter (PVBC), battery with bi-directional DC/DC converter and DC loads are covered. Diesel generator (DGs) and conventional AC loads are included in AC grid. Between AC and DC girds, a four-quadrant operating three phase converter is applied which can act as either an inverter or a rectifier to maintain power balance between two systems. The power units of this hybrid micro grid are simulated with Opal-RT real-time simulator while the control units are implemented on TI TMS320F28335 DSPs. This hardware-in-the-loop simulation workbench offers a good platform for system level control algorithm design and verification in micro grid. And it serves as a basis for future power-hardware-in-the-loop simulation (PHIL) with power stage involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cyber-physical resilience metric for smart grids Optimal allocation of photovoltaic systems and energy storage systems considering constraints of both transmission and distribution systems Stochastic dynamic power flow analysis based on stochastic response surfarce method and ARMA-GARCH model Towards the improvement of multi-objective evolutionary algorithms for service restoration Multi-level control framework for enhanced flexibility of active distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1