{"title":"模拟集成CMOS电路的层次表征","authors":"J. Eckmuller, M. Gropl, H. Grab","doi":"10.1109/DATE.1998.655925","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for hierarchical characterization of analog integrated circuits. For each circuit class, a fundamental set of performances is defined and extracted topology-independently. A circuit being characterized is decomposed in general subcircuits. Sizing rules of these topology-independent subcircuits are included into the characterization by functional constraints. In this way, bad circuit sizing is detected and located.","PeriodicalId":179207,"journal":{"name":"Proceedings Design, Automation and Test in Europe","volume":"1983 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hierarchical characterization of analog integrated CMOS circuits\",\"authors\":\"J. Eckmuller, M. Gropl, H. Grab\",\"doi\":\"10.1109/DATE.1998.655925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for hierarchical characterization of analog integrated circuits. For each circuit class, a fundamental set of performances is defined and extracted topology-independently. A circuit being characterized is decomposed in general subcircuits. Sizing rules of these topology-independent subcircuits are included into the characterization by functional constraints. In this way, bad circuit sizing is detected and located.\",\"PeriodicalId\":179207,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe\",\"volume\":\"1983 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.1998.655925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.1998.655925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical characterization of analog integrated CMOS circuits
This paper presents a new method for hierarchical characterization of analog integrated circuits. For each circuit class, a fundamental set of performances is defined and extracted topology-independently. A circuit being characterized is decomposed in general subcircuits. Sizing rules of these topology-independent subcircuits are included into the characterization by functional constraints. In this way, bad circuit sizing is detected and located.