Lingzhi Zhang, P. Kumar, Manuj R. Sabharwal, Andy Kuzma, Jianbo Shi
{"title":"拉普拉斯引导尺度空间绘图的图像压缩","authors":"Lingzhi Zhang, P. Kumar, Manuj R. Sabharwal, Andy Kuzma, Jianbo Shi","doi":"10.1109/ICIP40778.2020.9191041","DOIUrl":null,"url":null,"abstract":"We present an image compression algorithm that preserves high-frequency details and information of rare occurrences. Our approach can be thought of as image inpainting in the frequency scale space. Given an image, we construct a Laplacian image pyramid, and store only the finest and coarsest levels, thereby removing the middle-frequency of the image. Using a network backbone borrowed from an image super-resolution algorithm, we train our network to hallucinate the missing middle-level Laplacian image. We introduce a novel training paradigm where we train our algorithm using only a face dataset where the faces are aligned and scaled correctly. We demonstrate that image compression learned on this restricted dataset leads to better GAN network [1] convergence and generalization to completely different image domains. We also show that Lapacian inpainting could be simplified further with a few selective pixels as seeds.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Compression with Laplacian Guided Scale Space Inpainting\",\"authors\":\"Lingzhi Zhang, P. Kumar, Manuj R. Sabharwal, Andy Kuzma, Jianbo Shi\",\"doi\":\"10.1109/ICIP40778.2020.9191041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an image compression algorithm that preserves high-frequency details and information of rare occurrences. Our approach can be thought of as image inpainting in the frequency scale space. Given an image, we construct a Laplacian image pyramid, and store only the finest and coarsest levels, thereby removing the middle-frequency of the image. Using a network backbone borrowed from an image super-resolution algorithm, we train our network to hallucinate the missing middle-level Laplacian image. We introduce a novel training paradigm where we train our algorithm using only a face dataset where the faces are aligned and scaled correctly. We demonstrate that image compression learned on this restricted dataset leads to better GAN network [1] convergence and generalization to completely different image domains. We also show that Lapacian inpainting could be simplified further with a few selective pixels as seeds.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Compression with Laplacian Guided Scale Space Inpainting
We present an image compression algorithm that preserves high-frequency details and information of rare occurrences. Our approach can be thought of as image inpainting in the frequency scale space. Given an image, we construct a Laplacian image pyramid, and store only the finest and coarsest levels, thereby removing the middle-frequency of the image. Using a network backbone borrowed from an image super-resolution algorithm, we train our network to hallucinate the missing middle-level Laplacian image. We introduce a novel training paradigm where we train our algorithm using only a face dataset where the faces are aligned and scaled correctly. We demonstrate that image compression learned on this restricted dataset leads to better GAN network [1] convergence and generalization to completely different image domains. We also show that Lapacian inpainting could be simplified further with a few selective pixels as seeds.