用于物体识别的最小风险距离测量

S. Mahamud, M. Hebert
{"title":"用于物体识别的最小风险距离测量","authors":"S. Mahamud, M. Hebert","doi":"10.1109/ICCV.2003.1238349","DOIUrl":null,"url":null,"abstract":"The optimal distance measure for a given discrimination task under the nearest neighbor framework has been shown to be the likelihood that a pair of measurements have different class labels [S. Mahamud et al., (2002)]. For implementation and efficiency considerations, the optimal distance measure was approximated by combining more elementary distance measures defined on simple feature spaces. We address two important issues that arise in practice for such an approach: (a) What form should the elementary distance measure in each feature space take? We motivate the need to use the optimal distance measure in simple feature spaces as the elementary distance measures; such distance measures have the desirable property that they are invariant to distance-respecting transformations, (b) How do we combine the elementary distance measures ? We present the precise statistical assumptions under which a linear logistic model holds exactly. We benchmark our model with three other methods on a challenging face discrimination task and show that our approach is competitive with the state of the art.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Minimum risk distance measure for object recognition\",\"authors\":\"S. Mahamud, M. Hebert\",\"doi\":\"10.1109/ICCV.2003.1238349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal distance measure for a given discrimination task under the nearest neighbor framework has been shown to be the likelihood that a pair of measurements have different class labels [S. Mahamud et al., (2002)]. For implementation and efficiency considerations, the optimal distance measure was approximated by combining more elementary distance measures defined on simple feature spaces. We address two important issues that arise in practice for such an approach: (a) What form should the elementary distance measure in each feature space take? We motivate the need to use the optimal distance measure in simple feature spaces as the elementary distance measures; such distance measures have the desirable property that they are invariant to distance-respecting transformations, (b) How do we combine the elementary distance measures ? We present the precise statistical assumptions under which a linear logistic model holds exactly. We benchmark our model with three other methods on a challenging face discrimination task and show that our approach is competitive with the state of the art.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在最近邻框架下,对于给定的识别任务,最优距离度量已被证明是一对测量值具有不同类标签的可能性[S]。Mahamud et al.,(2002)。为了实现和效率的考虑,将定义在简单特征空间上的更多基本距离度量组合在一起来逼近最优距离度量。我们解决了这种方法在实践中出现的两个重要问题:(a)每个特征空间中的基本距离度量应该采取什么形式?我们激发了在简单特征空间中使用最优距离度量作为基本距离度量的需求;(b)我们如何结合基本距离度量?我们提出了精确的统计假设,在此假设下,线性逻辑模型完全成立。我们将我们的模型与其他三种方法在具有挑战性的人脸识别任务上进行基准测试,并表明我们的方法与最先进的方法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimum risk distance measure for object recognition
The optimal distance measure for a given discrimination task under the nearest neighbor framework has been shown to be the likelihood that a pair of measurements have different class labels [S. Mahamud et al., (2002)]. For implementation and efficiency considerations, the optimal distance measure was approximated by combining more elementary distance measures defined on simple feature spaces. We address two important issues that arise in practice for such an approach: (a) What form should the elementary distance measure in each feature space take? We motivate the need to use the optimal distance measure in simple feature spaces as the elementary distance measures; such distance measures have the desirable property that they are invariant to distance-respecting transformations, (b) How do we combine the elementary distance measures ? We present the precise statistical assumptions under which a linear logistic model holds exactly. We benchmark our model with three other methods on a challenging face discrimination task and show that our approach is competitive with the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1