植物油基交联剂对水凝胶药物释放行为的影响

E. Koca, C. Evrensel, Gökhan Çaylı, Pinar Cakir Hatir
{"title":"植物油基交联剂对水凝胶药物释放行为的影响","authors":"E. Koca, C. Evrensel, Gökhan Çaylı, Pinar Cakir Hatir","doi":"10.1109/EBBT.2017.7956777","DOIUrl":null,"url":null,"abstract":"Thermoresponsive hydrogels have great potential in biomedical applications such as drug delivery systems and tissue engineering. Synthesis of hydrogels from renewable resources attracts attention day by day. In this study special type of thermoresponsive hydrogels were synthesized. These hydrogels are cross-linked hydrophilic polymers containing some biocompatible moieties which are derived from plant oils. Renewable resources based biocompatible materials are easily accessible, cost effective and also eco-friendly. This study is focused on synthesis of thermoresponsive hydrogels by using plant oil-based crosslinker. N-Isopropylacrylamide (NIPAM) was used as thermoresponsive monomer and acrylated methyl ricinoleate (AMR) was used as plant oil-based crosslinker. The effect of crosslinker to monomer ratio on polymerization was investigated. Spectrophotometric measurements of quercetin molecule, one of the phenolic flavonoids, were performed at room temperature (RT) and body temperature (37°C). It was found that quercetin molecule released from hydrogels to aqueous medium is higher at body temperature compared to room temperature and also the molar ratio of crosslinker to monomer affects the release behaviour of hydrogels significantly. Finally plant-oil based crosslinker AMR, derived from renewable sources, can be used for hydrogel synthesis instead of other commercial crosslinker.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of plant oil-based crosslinker on drug release behaviour of hydrogels\",\"authors\":\"E. Koca, C. Evrensel, Gökhan Çaylı, Pinar Cakir Hatir\",\"doi\":\"10.1109/EBBT.2017.7956777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoresponsive hydrogels have great potential in biomedical applications such as drug delivery systems and tissue engineering. Synthesis of hydrogels from renewable resources attracts attention day by day. In this study special type of thermoresponsive hydrogels were synthesized. These hydrogels are cross-linked hydrophilic polymers containing some biocompatible moieties which are derived from plant oils. Renewable resources based biocompatible materials are easily accessible, cost effective and also eco-friendly. This study is focused on synthesis of thermoresponsive hydrogels by using plant oil-based crosslinker. N-Isopropylacrylamide (NIPAM) was used as thermoresponsive monomer and acrylated methyl ricinoleate (AMR) was used as plant oil-based crosslinker. The effect of crosslinker to monomer ratio on polymerization was investigated. Spectrophotometric measurements of quercetin molecule, one of the phenolic flavonoids, were performed at room temperature (RT) and body temperature (37°C). It was found that quercetin molecule released from hydrogels to aqueous medium is higher at body temperature compared to room temperature and also the molar ratio of crosslinker to monomer affects the release behaviour of hydrogels significantly. Finally plant-oil based crosslinker AMR, derived from renewable sources, can be used for hydrogel synthesis instead of other commercial crosslinker.\",\"PeriodicalId\":293165,\"journal\":{\"name\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBBT.2017.7956777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

热响应性水凝胶在药物输送系统和组织工程等生物医学领域具有巨大的应用潜力。利用可再生资源合成水凝胶日益受到人们的关注。本研究合成了一种特殊类型的热敏水凝胶。这些水凝胶是交联的亲水性聚合物,含有一些从植物油中提取的生物相容性部分。基于可再生资源的生物相容性材料很容易获得,成本效益高,也很环保。研究了以植物油为原料,利用交联剂合成热响应型水凝胶。以n -异丙基丙烯酰胺(NIPAM)为热响应单体,以丙烯酸化蓖麻油酸甲酯(AMR)为植物油基交联剂。考察了交联剂与单体配比对聚合反应的影响。槲皮素是一种酚类黄酮,用分光光度法测定了槲皮素分子在室温和体温下的含量。结果表明,槲皮素分子在常温下从水凝胶中释放到水介质中,其释放量高于室温,交联剂与单体的摩尔比对水凝胶的释放行为有显著影响。最后,从可再生资源中提取的植物油基交联剂AMR可代替其他商用交联剂用于水凝胶合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of plant oil-based crosslinker on drug release behaviour of hydrogels
Thermoresponsive hydrogels have great potential in biomedical applications such as drug delivery systems and tissue engineering. Synthesis of hydrogels from renewable resources attracts attention day by day. In this study special type of thermoresponsive hydrogels were synthesized. These hydrogels are cross-linked hydrophilic polymers containing some biocompatible moieties which are derived from plant oils. Renewable resources based biocompatible materials are easily accessible, cost effective and also eco-friendly. This study is focused on synthesis of thermoresponsive hydrogels by using plant oil-based crosslinker. N-Isopropylacrylamide (NIPAM) was used as thermoresponsive monomer and acrylated methyl ricinoleate (AMR) was used as plant oil-based crosslinker. The effect of crosslinker to monomer ratio on polymerization was investigated. Spectrophotometric measurements of quercetin molecule, one of the phenolic flavonoids, were performed at room temperature (RT) and body temperature (37°C). It was found that quercetin molecule released from hydrogels to aqueous medium is higher at body temperature compared to room temperature and also the molar ratio of crosslinker to monomer affects the release behaviour of hydrogels significantly. Finally plant-oil based crosslinker AMR, derived from renewable sources, can be used for hydrogel synthesis instead of other commercial crosslinker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of injured kidney in computed tomography Predictive cruise control Effects of aerobic capacity, age and gender on brain neural matter Electromagnetic radiation interaction and pollution measurements Characterization of a bend sensor for neuroprosthetic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1