迈向微服务的最优配置

Gagan Somashekar, Anshul Gandhi
{"title":"迈向微服务的最优配置","authors":"Gagan Somashekar, Anshul Gandhi","doi":"10.1145/3437984.3458828","DOIUrl":null,"url":null,"abstract":"The microservice architecture allows applications to be designed in a modular format, whereby each microservice can implement a single functionality and can be independently managed and deployed. However, an undesirable side-effect of this modular design is the large state space of possibly inter-dependent configuration parameters (of the constituent microservices) which have to be tuned to improve application performance. This workshop paper investigates optimization techniques and dimensionality reduction strategies for tuning microservices applications, empirically demonstrating the significant tail latency improvements (as much as 23%) that can be achieved with configuration tuning.","PeriodicalId":269840,"journal":{"name":"Proceedings of the 1st Workshop on Machine Learning and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Towards Optimal Configuration of Microservices\",\"authors\":\"Gagan Somashekar, Anshul Gandhi\",\"doi\":\"10.1145/3437984.3458828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microservice architecture allows applications to be designed in a modular format, whereby each microservice can implement a single functionality and can be independently managed and deployed. However, an undesirable side-effect of this modular design is the large state space of possibly inter-dependent configuration parameters (of the constituent microservices) which have to be tuned to improve application performance. This workshop paper investigates optimization techniques and dimensionality reduction strategies for tuning microservices applications, empirically demonstrating the significant tail latency improvements (as much as 23%) that can be achieved with configuration tuning.\",\"PeriodicalId\":269840,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Machine Learning and Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Machine Learning and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437984.3458828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Machine Learning and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437984.3458828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

微服务架构允许以模块化格式设计应用程序,每个微服务可以实现单个功能,并且可以独立管理和部署。然而,这种模块化设计的一个不良副作用是(组成微服务的)可能相互依赖的配置参数的大状态空间,必须对其进行调优以提高应用程序性能。这篇研讨会论文研究了调优微服务应用程序的优化技术和降维策略,经验证明了通过配置调优可以实现显著的尾部延迟改进(多达23%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Optimal Configuration of Microservices
The microservice architecture allows applications to be designed in a modular format, whereby each microservice can implement a single functionality and can be independently managed and deployed. However, an undesirable side-effect of this modular design is the large state space of possibly inter-dependent configuration parameters (of the constituent microservices) which have to be tuned to improve application performance. This workshop paper investigates optimization techniques and dimensionality reduction strategies for tuning microservices applications, empirically demonstrating the significant tail latency improvements (as much as 23%) that can be achieved with configuration tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Mitigating Device Heterogeneity in Federated Learning via Adaptive Model Quantization Queen Jane Approximately: Enabling Efficient Neural Network Inference with Context-Adaptivity Are we there yet? Estimating Training Time for Recommendation Systems Predicting CPU usage for proactive autoscaling Towards Optimal Configuration of Microservices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1