使用深度强化学习的O-RAN切片的智能接纳和放置

Nabhasmita Sen, A. Franklin
{"title":"使用深度强化学习的O-RAN切片的智能接纳和放置","authors":"Nabhasmita Sen, A. Franklin","doi":"10.1109/NetSoft54395.2022.9844089","DOIUrl":null,"url":null,"abstract":"Network slicing is a key feature of 5G and beyond networks. Intelligent management of slices is important for reaping its highest benefits which needs further exploration. Focusing only on one goal as revenue maximization or cost minimization may not generate the highest profit for infrastructure providers in the long run. In this paper we jointly consider online admission and placement of Radio Access Network (RAN) slices with two objectives - a) maximizing revenue from accepting slices which are more profitable in the long run, and b) minimizing the cost to deploy them in Open RAN (O-RAN) enabled network by placing the slices efficiently. We formulate it as an optimization problem and propose a Deep Reinforcement Learning (DRL) based solution using Proximal Policy optimization (PPO). We compare our model with a state-of-the-art DRL based admission control solution and a greedy heuristic. We show that our proposed solution can efficiently adapt to dynamic load conditions. We also show that the proposed solution results in better performance to maximize the overall profit for infrastructure providers in comparison to the baselines.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent Admission and Placement of O-RAN Slices Using Deep Reinforcement Learning\",\"authors\":\"Nabhasmita Sen, A. Franklin\",\"doi\":\"10.1109/NetSoft54395.2022.9844089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network slicing is a key feature of 5G and beyond networks. Intelligent management of slices is important for reaping its highest benefits which needs further exploration. Focusing only on one goal as revenue maximization or cost minimization may not generate the highest profit for infrastructure providers in the long run. In this paper we jointly consider online admission and placement of Radio Access Network (RAN) slices with two objectives - a) maximizing revenue from accepting slices which are more profitable in the long run, and b) minimizing the cost to deploy them in Open RAN (O-RAN) enabled network by placing the slices efficiently. We formulate it as an optimization problem and propose a Deep Reinforcement Learning (DRL) based solution using Proximal Policy optimization (PPO). We compare our model with a state-of-the-art DRL based admission control solution and a greedy heuristic. We show that our proposed solution can efficiently adapt to dynamic load conditions. We also show that the proposed solution results in better performance to maximize the overall profit for infrastructure providers in comparison to the baselines.\",\"PeriodicalId\":125799,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft54395.2022.9844089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络切片是5G及以后网络的一个关键特性。切片智能管理是实现切片最大效益的重要途径,有待进一步探索。从长远来看,只关注一个目标,如收入最大化或成本最小化,可能不会为基础设施提供商带来最高的利润。在本文中,我们共同考虑无线接入网(RAN)片的在线接纳和放置,有两个目标- a)从长期来看更有利可图的片中获得最大收益,b)通过有效放置片来最小化在开放RAN (O-RAN)支持的网络中部署它们的成本。我们将其表述为一个优化问题,并提出了一个基于深度强化学习(DRL)的解决方案,使用近端策略优化(PPO)。我们将我们的模型与最先进的基于DRL的准入控制解决方案和贪婪启发式进行比较。结果表明,该方法能有效地适应动态载荷条件。我们还表明,与基线相比,所建议的解决方案可以带来更好的性能,从而使基础设施提供商的整体利润最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Admission and Placement of O-RAN Slices Using Deep Reinforcement Learning
Network slicing is a key feature of 5G and beyond networks. Intelligent management of slices is important for reaping its highest benefits which needs further exploration. Focusing only on one goal as revenue maximization or cost minimization may not generate the highest profit for infrastructure providers in the long run. In this paper we jointly consider online admission and placement of Radio Access Network (RAN) slices with two objectives - a) maximizing revenue from accepting slices which are more profitable in the long run, and b) minimizing the cost to deploy them in Open RAN (O-RAN) enabled network by placing the slices efficiently. We formulate it as an optimization problem and propose a Deep Reinforcement Learning (DRL) based solution using Proximal Policy optimization (PPO). We compare our model with a state-of-the-art DRL based admission control solution and a greedy heuristic. We show that our proposed solution can efficiently adapt to dynamic load conditions. We also show that the proposed solution results in better performance to maximize the overall profit for infrastructure providers in comparison to the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible Measurement Testbed for Evaluating Time-Sensitive Networking in Industrial Automation Applications Latency-aware Topology Discovery in SDN-based Time-Sensitive Networks NLP4: An Architecture for Intent-Driven Data Plane Programmability CHIMA: a Framework for Network Services Deployment and Performance Assurance Encrypted Network Traffic Classification in SDN using Self-supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1