{"title":"(n, k)-星图的分数匹配排除","authors":"Tianlong Ma, Y. Mao, E. Cheng, Jinling Wang","doi":"10.1142/S0129626418500172","DOIUrl":null,"url":null,"abstract":"The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu introduced the concept of fractional matching preclusion number in 2017. The Fractional Matching Preclusion Number (FMP number) of G is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The Fractional Strong Matching Preclusion Number (FSMP number) of G is the minimum number of vertices and/or edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the FMP number and the FSMP number for (n, k)-star graphs. In addition, all the optimal fractional strong matching preclusion sets of these graphs are categorized.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fractional Matching Preclusion for (n, k)-Star Graphs\",\"authors\":\"Tianlong Ma, Y. Mao, E. Cheng, Jinling Wang\",\"doi\":\"10.1142/S0129626418500172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu introduced the concept of fractional matching preclusion number in 2017. The Fractional Matching Preclusion Number (FMP number) of G is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The Fractional Strong Matching Preclusion Number (FSMP number) of G is the minimum number of vertices and/or edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the FMP number and the FSMP number for (n, k)-star graphs. In addition, all the optimal fractional strong matching preclusion sets of these graphs are categorized.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626418500172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626418500172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractional Matching Preclusion for (n, k)-Star Graphs
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu introduced the concept of fractional matching preclusion number in 2017. The Fractional Matching Preclusion Number (FMP number) of G is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The Fractional Strong Matching Preclusion Number (FSMP number) of G is the minimum number of vertices and/or edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the FMP number and the FSMP number for (n, k)-star graphs. In addition, all the optimal fractional strong matching preclusion sets of these graphs are categorized.