FREED:一种有效的个人身份再识别隐私保护方案

Bowen Zhao, Yingjiu Li, Ximeng Liu, HweeHwa Pang, R. Deng
{"title":"FREED:一种有效的个人身份再识别隐私保护方案","authors":"Bowen Zhao, Yingjiu Li, Ximeng Liu, HweeHwa Pang, R. Deng","doi":"10.1109/DSC54232.2022.9888863","DOIUrl":null,"url":null,"abstract":"Person Re-IDentification (Re-ID) is a critical technology to identify a target person from captured person images by surveillance cameras. However, person Re-ID has triggered great concerns of personal image privacy. Although the law (e.g., GDPR) has stipulated person images are personal private data, there is no an efficient solution to tackle the image privacy concern for person Re-ID. To this end, we propose FREED, the first system solution for privacy-preserving person Re-ID, which supports the state-of-the-art person Re-ID operations on encrypted feature vectors of person images. To handle the encryption of feature vectors effectively and enable person Re-ID operations on encrypted feature vectors efficiently, FREED develops a suite of batch secure computing protocols based on a twin-server architecture and the threshold Paillier cryptosystem. We demonstrate our secure computing protocols are more efficient than existing protocols and FREED achieves a precision equal to the state-of-the-art plaintext method.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FREED: An Efficient Privacy-Preserving Solution for Person Re-IDentification\",\"authors\":\"Bowen Zhao, Yingjiu Li, Ximeng Liu, HweeHwa Pang, R. Deng\",\"doi\":\"10.1109/DSC54232.2022.9888863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person Re-IDentification (Re-ID) is a critical technology to identify a target person from captured person images by surveillance cameras. However, person Re-ID has triggered great concerns of personal image privacy. Although the law (e.g., GDPR) has stipulated person images are personal private data, there is no an efficient solution to tackle the image privacy concern for person Re-ID. To this end, we propose FREED, the first system solution for privacy-preserving person Re-ID, which supports the state-of-the-art person Re-ID operations on encrypted feature vectors of person images. To handle the encryption of feature vectors effectively and enable person Re-ID operations on encrypted feature vectors efficiently, FREED develops a suite of batch secure computing protocols based on a twin-server architecture and the threshold Paillier cryptosystem. We demonstrate our secure computing protocols are more efficient than existing protocols and FREED achieves a precision equal to the state-of-the-art plaintext method.\",\"PeriodicalId\":368903,\"journal\":{\"name\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC54232.2022.9888863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人员再识别(Re-ID)是一项从监控摄像机捕获的人员图像中识别目标人员的关键技术。然而,个人身份重新识别引发了人们对个人形象隐私的极大关注。虽然法律(例如GDPR)规定了个人图像是个人私人数据,但没有一个有效的解决方案来解决个人重新识别的图像隐私问题。为此,我们提出了FREED,这是第一个保护隐私的人物身份识别系统解决方案,它支持对人物图像的加密特征向量进行最先进的人物身份识别操作。为了有效地处理特征向量的加密,使人能够有效地对加密的特征向量进行重新识别操作,FREED开发了一套基于双服务器架构和阈值Paillier密码系统的批处理安全计算协议。我们证明我们的安全计算协议比现有协议更有效,FREED实现了与最先进的明文方法相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FREED: An Efficient Privacy-Preserving Solution for Person Re-IDentification
Person Re-IDentification (Re-ID) is a critical technology to identify a target person from captured person images by surveillance cameras. However, person Re-ID has triggered great concerns of personal image privacy. Although the law (e.g., GDPR) has stipulated person images are personal private data, there is no an efficient solution to tackle the image privacy concern for person Re-ID. To this end, we propose FREED, the first system solution for privacy-preserving person Re-ID, which supports the state-of-the-art person Re-ID operations on encrypted feature vectors of person images. To handle the encryption of feature vectors effectively and enable person Re-ID operations on encrypted feature vectors efficiently, FREED develops a suite of batch secure computing protocols based on a twin-server architecture and the threshold Paillier cryptosystem. We demonstrate our secure computing protocols are more efficient than existing protocols and FREED achieves a precision equal to the state-of-the-art plaintext method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolon: Enabling Flexible Multi-device-based User Authentication A Survey on Explainable Anomaly Detection for Industrial Internet of Things Optimising user security recommendations for AI-powered smart-homes A Scary Peek into The Future: Advanced Persistent Threats in Emerging Computing Environments LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1