{"title":"基于CRF的空间原型区域分类","authors":"M. Jahangiri, D. Heesch, M. Petrou","doi":"10.1109/DICTA.2010.92","DOIUrl":null,"url":null,"abstract":"This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CRF Based Region Classification Using Spatial Prototypes\",\"authors\":\"M. Jahangiri, D. Heesch, M. Petrou\",\"doi\":\"10.1109/DICTA.2010.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRF Based Region Classification Using Spatial Prototypes
This paper proposes a probabilistic model using conditional random field (CRF) for region labelling that encodes and exploits the spatial context of a region. Potential functions for a region depend on a combination of the labels of neighbouring regions as well as their relative location, and a set of typical neighbourhood configurations or prototypes. These are obtained by clustering neighbourhood configurations obtained from a set of annotated images. Inference is achieved by minimising the cost function defined over the CRF model using standard Markov Chain Monte Carlo (MCMC) technique. We validate our approach on a dataset of hand segmented and labelled images of buildings and show that the model outperforms similar such models that utilise either only contextual information or only non-contextual measures.