OWL本体自动生成ER图的隐马尔可夫模型

A. Pipitone, R. Pirrone
{"title":"OWL本体自动生成ER图的隐马尔可夫模型","authors":"A. Pipitone, R. Pirrone","doi":"10.1109/ICSC.2014.19","DOIUrl":null,"url":null,"abstract":"Connecting ontological representations and data models is a crucial need in enterprise knowledge management, above all in the case of federated enterprises where corporate ontologies are used to share information coming from different databases. OWL to ERD transformations are a challenging research field in this scenario, due to the loss of expressiveness arising when OWL axioms have to be represented using ERD notation. In this paper we propose an innovative technique for estimating the most likely composition of ERD constructs that correspond to a given sequence of OWL axioms. We model such a process using a Hidden Markov Model (HMM) where the OWL inputs are the observable states, while ERD structures are the hidden states. Transition and emission probabilities have been set up heuristically through the analysis of a purposely defined grammar describing the ERD syntax, and all the OWL/ERD mapping rules presented in the literature. The theoretical model is explained in detail, a case study is exploited, and the experimental results are presented.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hidden Markov Model for Automatic Generation of ER Diagrams from OWL Ontology\",\"authors\":\"A. Pipitone, R. Pirrone\",\"doi\":\"10.1109/ICSC.2014.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connecting ontological representations and data models is a crucial need in enterprise knowledge management, above all in the case of federated enterprises where corporate ontologies are used to share information coming from different databases. OWL to ERD transformations are a challenging research field in this scenario, due to the loss of expressiveness arising when OWL axioms have to be represented using ERD notation. In this paper we propose an innovative technique for estimating the most likely composition of ERD constructs that correspond to a given sequence of OWL axioms. We model such a process using a Hidden Markov Model (HMM) where the OWL inputs are the observable states, while ERD structures are the hidden states. Transition and emission probabilities have been set up heuristically through the analysis of a purposely defined grammar describing the ERD syntax, and all the OWL/ERD mapping rules presented in the literature. The theoretical model is explained in detail, a case study is exploited, and the experimental results are presented.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

连接本体表示和数据模型是企业知识管理中的关键需求,尤其是在联邦企业中,企业本体用于共享来自不同数据库的信息。在这种情况下,OWL到ERD的转换是一个具有挑战性的研究领域,因为当必须使用ERD符号表示OWL公理时,会产生表达性的损失。在本文中,我们提出了一种创新的技术,用于估计与给定OWL公理序列相对应的最可能的ERD结构组成。我们使用隐马尔可夫模型(HMM)对这样的过程建模,其中OWL输入是可观察状态,而ERD结构是隐藏状态。通过分析有目的地定义的描述ERD语法的语法,以及文献中提出的所有OWL/ERD映射规则,启发式地建立了转换概率和发射概率。对理论模型进行了详细的说明,并给出了实例分析和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hidden Markov Model for Automatic Generation of ER Diagrams from OWL Ontology
Connecting ontological representations and data models is a crucial need in enterprise knowledge management, above all in the case of federated enterprises where corporate ontologies are used to share information coming from different databases. OWL to ERD transformations are a challenging research field in this scenario, due to the loss of expressiveness arising when OWL axioms have to be represented using ERD notation. In this paper we propose an innovative technique for estimating the most likely composition of ERD constructs that correspond to a given sequence of OWL axioms. We model such a process using a Hidden Markov Model (HMM) where the OWL inputs are the observable states, while ERD structures are the hidden states. Transition and emission probabilities have been set up heuristically through the analysis of a purposely defined grammar describing the ERD syntax, and all the OWL/ERD mapping rules presented in the literature. The theoretical model is explained in detail, a case study is exploited, and the experimental results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1