基于分布式CEP的道路交通碰撞大数据处理框架

In Lee
{"title":"基于分布式CEP的道路交通碰撞大数据处理框架","authors":"In Lee","doi":"10.1109/APNOMS.2014.6996577","DOIUrl":null,"url":null,"abstract":"The traffic information is a big data comes from varying sources, such as, social sites, mobile phone GPS signals and so on. The Hadoop and HBase can store and analyze real-time collision data in a distributed processing framework. This framework can be designed as flexible and scalable framework using distributed CEP that process massive real-time traffic data and ESB that integrates other services. In this paper, we propose a new architecture for distributed processing that enables big data processing on the road traffic data and its related information analysis. We tested the proposed framework on road traffic data on 400km from Seoul to Busan freeway section in Korea. By integrating freeway traffic big data and collision data over a seven-year period (1TB Size), we obtained the collision probability data.","PeriodicalId":269952,"journal":{"name":"The 16th Asia-Pacific Network Operations and Management Symposium","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Big data processing framework of road traffic collision using distributed CEP\",\"authors\":\"In Lee\",\"doi\":\"10.1109/APNOMS.2014.6996577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traffic information is a big data comes from varying sources, such as, social sites, mobile phone GPS signals and so on. The Hadoop and HBase can store and analyze real-time collision data in a distributed processing framework. This framework can be designed as flexible and scalable framework using distributed CEP that process massive real-time traffic data and ESB that integrates other services. In this paper, we propose a new architecture for distributed processing that enables big data processing on the road traffic data and its related information analysis. We tested the proposed framework on road traffic data on 400km from Seoul to Busan freeway section in Korea. By integrating freeway traffic big data and collision data over a seven-year period (1TB Size), we obtained the collision probability data.\",\"PeriodicalId\":269952,\"journal\":{\"name\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APNOMS.2014.6996577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 16th Asia-Pacific Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APNOMS.2014.6996577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

交通信息是一个大数据,来源多种多样,如社交网站、手机GPS信号等。Hadoop和HBase可以在分布式处理框架下存储和分析实时碰撞数据。可以使用分布式CEP(处理大量实时流量数据)和集成其他服务的ESB将该框架设计为灵活且可扩展的框架。本文提出了一种新的分布式处理架构,实现道路交通数据的大数据处理及其相关信息分析。我们在首尔至釜山高速公路400公里区间的道路交通数据上进行了测试。通过整合高速公路交通大数据和7年(1TB Size)的碰撞数据,我们得到了碰撞概率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data processing framework of road traffic collision using distributed CEP
The traffic information is a big data comes from varying sources, such as, social sites, mobile phone GPS signals and so on. The Hadoop and HBase can store and analyze real-time collision data in a distributed processing framework. This framework can be designed as flexible and scalable framework using distributed CEP that process massive real-time traffic data and ESB that integrates other services. In this paper, we propose a new architecture for distributed processing that enables big data processing on the road traffic data and its related information analysis. We tested the proposed framework on road traffic data on 400km from Seoul to Busan freeway section in Korea. By integrating freeway traffic big data and collision data over a seven-year period (1TB Size), we obtained the collision probability data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Final program Quality management and network faults diagnosis for IPTV service Adaptive decision making for improving trust establishment in VANET A traffic load balancing method for component-based service platform with heterogeneous wireless access networks A comparison of 4G telecommunications tariff plans in Asia countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1