出发地轨迹多样性分析:高效Top-k多样化搜索

Dan He, Boyu Ruan, Bolong Zheng, Xiaofang Zhou
{"title":"出发地轨迹多样性分析:高效Top-k多样化搜索","authors":"Dan He, Boyu Ruan, Bolong Zheng, Xiaofang Zhou","doi":"10.1109/MDM.2018.00030","DOIUrl":null,"url":null,"abstract":"Given a pair of Origin-Destination (OD) locations, the set of trajectories passing from the original to destination, usually possesses the nature to reflect different traveling patterns between OD. In general, the higher diversity these trajectories have, the more various traveling behaviors and greater robustness of the connectivity can be revealed, which highly raises the value of transportation analysis towards the corresponding OD pair. Therefore, in this paper, we introduce a comprehensive and rational measure for trajectory diversity, on top of which we propose a novel query, Top-k Diversified Search (TkDS), that aims to find a set of k OD pairs among all the given OD pairs such that the trajectories traversing in-between have the highest diversity. Owing to the intrinsic characteristics of trajectory data, the computational cost for diversity is considerably high. Thus we present an efficient bounding algorithm with early termination to filter the candidates that are impossible to contribute the result. Finally, we demonstrate some case studies for trajectory diversity on real world dataset and give a comprehensive performance evaluation on the Top-k Diversified Search.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Origin-Destination Trajectory Diversity Analysis: Efficient Top-k Diversified Search\",\"authors\":\"Dan He, Boyu Ruan, Bolong Zheng, Xiaofang Zhou\",\"doi\":\"10.1109/MDM.2018.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a pair of Origin-Destination (OD) locations, the set of trajectories passing from the original to destination, usually possesses the nature to reflect different traveling patterns between OD. In general, the higher diversity these trajectories have, the more various traveling behaviors and greater robustness of the connectivity can be revealed, which highly raises the value of transportation analysis towards the corresponding OD pair. Therefore, in this paper, we introduce a comprehensive and rational measure for trajectory diversity, on top of which we propose a novel query, Top-k Diversified Search (TkDS), that aims to find a set of k OD pairs among all the given OD pairs such that the trajectories traversing in-between have the highest diversity. Owing to the intrinsic characteristics of trajectory data, the computational cost for diversity is considerably high. Thus we present an efficient bounding algorithm with early termination to filter the candidates that are impossible to contribute the result. Finally, we demonstrate some case studies for trajectory diversity on real world dataset and give a comprehensive performance evaluation on the Top-k Diversified Search.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定一对出发地-目的地(OD)位置,从出发地到目的地的轨迹集通常具有反映不同OD之间的旅行模式的性质。总体而言,这些轨迹的多样性越高,可以揭示出更多的出行行为和更强的连通性,这极大地提高了对相应OD对的运输分析的价值。因此,本文引入了一种全面合理的轨迹多样性度量,并在此基础上提出了一种新的查询——top -k Diversified Search (TkDS),其目的是在所有给定的OD对中找到k个OD对的集合,使得在中间穿越的轨迹具有最高的多样性。由于轨迹数据的固有特性,多样性的计算代价相当高。因此,我们提出了一种有效的提前终止边界算法来过滤不可能贡献结果的候选对象。最后,我们在实际数据集上展示了一些轨迹多样性的案例研究,并对Top-k多样化搜索进行了综合性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Origin-Destination Trajectory Diversity Analysis: Efficient Top-k Diversified Search
Given a pair of Origin-Destination (OD) locations, the set of trajectories passing from the original to destination, usually possesses the nature to reflect different traveling patterns between OD. In general, the higher diversity these trajectories have, the more various traveling behaviors and greater robustness of the connectivity can be revealed, which highly raises the value of transportation analysis towards the corresponding OD pair. Therefore, in this paper, we introduce a comprehensive and rational measure for trajectory diversity, on top of which we propose a novel query, Top-k Diversified Search (TkDS), that aims to find a set of k OD pairs among all the given OD pairs such that the trajectories traversing in-between have the highest diversity. Owing to the intrinsic characteristics of trajectory data, the computational cost for diversity is considerably high. Thus we present an efficient bounding algorithm with early termination to filter the candidates that are impossible to contribute the result. Finally, we demonstrate some case studies for trajectory diversity on real world dataset and give a comprehensive performance evaluation on the Top-k Diversified Search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1