LTE中集成移动负载均衡与流量导向机制

Péter Szilágyi, Zoltán Vincze, C. Vulkán
{"title":"LTE中集成移动负载均衡与流量导向机制","authors":"Péter Szilágyi, Zoltán Vincze, C. Vulkán","doi":"10.1109/PIMRC.2013.6666499","DOIUrl":null,"url":null,"abstract":"Mobility Load Balancing (MLB) is a Self-Organising Networks (SON) use case with the scope of detecting and resolving radio overload. In case of overload, the MLB triggers the handover of cell edge users towards less loaded neighbour cells to better align the traffic demand with the capacity available on the air interface. This, however, also increases the load on the transport links of these cells; therefore, MLB should consider the transport status in order not to cause transport congestion while resolving air interface overload. This paper proposes a general MLB framework that, unlike existing mechanisms, has efficient means to properly consider the transport load and congestion in addition to the radio load. The solution is not limited to any particular transport network topology and it also acts as a Traffic Steering (TS) mechanism as it resolves transport overload by redirecting users to neighbour cells with spare transport resources. The performance of the proposed framework was evaluated with simulations. Results indicate that the solution improves the overall system performance by balancing both radio and transport load.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Integrated Mobility Load Balancing and Traffic Steering mechanism in LTE\",\"authors\":\"Péter Szilágyi, Zoltán Vincze, C. Vulkán\",\"doi\":\"10.1109/PIMRC.2013.6666499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobility Load Balancing (MLB) is a Self-Organising Networks (SON) use case with the scope of detecting and resolving radio overload. In case of overload, the MLB triggers the handover of cell edge users towards less loaded neighbour cells to better align the traffic demand with the capacity available on the air interface. This, however, also increases the load on the transport links of these cells; therefore, MLB should consider the transport status in order not to cause transport congestion while resolving air interface overload. This paper proposes a general MLB framework that, unlike existing mechanisms, has efficient means to properly consider the transport load and congestion in addition to the radio load. The solution is not limited to any particular transport network topology and it also acts as a Traffic Steering (TS) mechanism as it resolves transport overload by redirecting users to neighbour cells with spare transport resources. The performance of the proposed framework was evaluated with simulations. Results indicate that the solution improves the overall system performance by balancing both radio and transport load.\",\"PeriodicalId\":210993,\"journal\":{\"name\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2013.6666499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动负载平衡(MLB)是一种自组织网络(SON)用例,其范围是检测和解决无线电过载。在过载的情况下,MLB触发蜂窝边缘用户向负载较低的邻居蜂窝的切换,以更好地将流量需求与空中接口上的可用容量结合起来。然而,这也增加了这些细胞运输链上的负荷;因此,MLB在解决空口过载的同时要考虑到传输状态,以免造成传输拥塞。本文提出了一个通用的MLB框架,与现有的机制不同,该框架除了考虑无线电负载外,还有效地考虑了传输负载和拥塞。该解决方案不局限于任何特定的传输网络拓扑结构,它还充当流量转向(TS)机制,因为它通过将用户重定向到具有备用传输资源的相邻单元来解决传输过载问题。通过仿真对该框架的性能进行了评价。结果表明,该方案通过平衡无线电和传输负载,提高了系统的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Mobility Load Balancing and Traffic Steering mechanism in LTE
Mobility Load Balancing (MLB) is a Self-Organising Networks (SON) use case with the scope of detecting and resolving radio overload. In case of overload, the MLB triggers the handover of cell edge users towards less loaded neighbour cells to better align the traffic demand with the capacity available on the air interface. This, however, also increases the load on the transport links of these cells; therefore, MLB should consider the transport status in order not to cause transport congestion while resolving air interface overload. This paper proposes a general MLB framework that, unlike existing mechanisms, has efficient means to properly consider the transport load and congestion in addition to the radio load. The solution is not limited to any particular transport network topology and it also acts as a Traffic Steering (TS) mechanism as it resolves transport overload by redirecting users to neighbour cells with spare transport resources. The performance of the proposed framework was evaluated with simulations. Results indicate that the solution improves the overall system performance by balancing both radio and transport load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validation of fog models for FSO under laboratory controlled conditions EWMA-triggered waterfilling for reduced-complexity resource management in ad-hoc connections Sleep scheduling in IEEE 802.16j relay networks A comparison of implicit and explicit channel feedback methods for MU-MIMO WLAN systems Optimization of collaborating secondary users in a cooperative sensing under noise uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1