{"title":"基于视觉运动的后跳跃漂移适应模拟VLSI电路","authors":"T. Horiuchi, C. Koch","doi":"10.1109/MNNFS.1996.493773","DOIUrl":null,"url":null,"abstract":"Using the analog VLSI-based saccadic eye movement system previously developed we investigate the use of biologically realistic error signals to calibrate the system in a manner similar to the primate oculomotor system. In this paper we introduce two new circuit components which are used to perform this task, a resettable-integrator model of the burst generator with a floating-gate structure to provide on-chip storage of analog parameters and a directionally-selective motion detector for detecting post-saccadic drift.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Analog VLSI circuits for visual motion-based adaptation of post-saccadic drift\",\"authors\":\"T. Horiuchi, C. Koch\",\"doi\":\"10.1109/MNNFS.1996.493773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the analog VLSI-based saccadic eye movement system previously developed we investigate the use of biologically realistic error signals to calibrate the system in a manner similar to the primate oculomotor system. In this paper we introduce two new circuit components which are used to perform this task, a resettable-integrator model of the burst generator with a floating-gate structure to provide on-chip storage of analog parameters and a directionally-selective motion detector for detecting post-saccadic drift.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analog VLSI circuits for visual motion-based adaptation of post-saccadic drift
Using the analog VLSI-based saccadic eye movement system previously developed we investigate the use of biologically realistic error signals to calibrate the system in a manner similar to the primate oculomotor system. In this paper we introduce two new circuit components which are used to perform this task, a resettable-integrator model of the burst generator with a floating-gate structure to provide on-chip storage of analog parameters and a directionally-selective motion detector for detecting post-saccadic drift.