阿波罗:在云边缘连续体中实现无服务器功能组合的高效分布式编排

Fedor Smirnov, Chris Engelhardt, Jakob Mittelberger, Behnaz Pourmohseni, T. Fahringer
{"title":"阿波罗:在云边缘连续体中实现无服务器功能组合的高效分布式编排","authors":"Fedor Smirnov, Chris Engelhardt, Jakob Mittelberger, Behnaz Pourmohseni, T. Fahringer","doi":"10.1145/3468737.3494103","DOIUrl":null,"url":null,"abstract":"This paper provides a first presentation of Apollo, an orchestration framework for serverless function compositions distributed across the cloud-edge continuum. Apollo has a modular design that enables a fine-grained decomposition of the runtime orchestration (scheduling, data transmission, etc.) of applications, so that each of the numerous orchestration decisions can be optimized separately, fully exploiting the potential for the optimization of performance and costs. Apollo features (a) a flexible model of the application and the available resources and (b) a decentralized orchestration scheme carried out by independent agents. This flexible structure enables distributing not only the processing but also the orchestration process itself across a large number of resources, each running an independent Apollo instance. In combination with the ability to execute parts of the application directly on the host of each Apollo instance, this unleashes a significant potential for cost and performance optimization by leveraging data locality. Apollo's efficiency and its potential for application performance improvement are demonstrated in a series of experiments---for both synthetic and real function compositions---where Apollo's capability for flexible distribution of tasks between local containers and serverless functions enables a significant application speedup (up to 20X).","PeriodicalId":254382,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Apollo: towards an efficient distributed orchestration of serverless function compositions in the cloud-edge continuum\",\"authors\":\"Fedor Smirnov, Chris Engelhardt, Jakob Mittelberger, Behnaz Pourmohseni, T. Fahringer\",\"doi\":\"10.1145/3468737.3494103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a first presentation of Apollo, an orchestration framework for serverless function compositions distributed across the cloud-edge continuum. Apollo has a modular design that enables a fine-grained decomposition of the runtime orchestration (scheduling, data transmission, etc.) of applications, so that each of the numerous orchestration decisions can be optimized separately, fully exploiting the potential for the optimization of performance and costs. Apollo features (a) a flexible model of the application and the available resources and (b) a decentralized orchestration scheme carried out by independent agents. This flexible structure enables distributing not only the processing but also the orchestration process itself across a large number of resources, each running an independent Apollo instance. In combination with the ability to execute parts of the application directly on the host of each Apollo instance, this unleashes a significant potential for cost and performance optimization by leveraging data locality. Apollo's efficiency and its potential for application performance improvement are demonstrated in a series of experiments---for both synthetic and real function compositions---where Apollo's capability for flexible distribution of tasks between local containers and serverless functions enables a significant application speedup (up to 20X).\",\"PeriodicalId\":254382,\"journal\":{\"name\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468737.3494103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468737.3494103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首次介绍了Apollo,它是一个用于跨云边缘连续体分布的无服务器功能组合的编排框架。Apollo采用模块化设计,支持对应用程序的运行时编排(调度、数据传输等)进行细粒度分解,以便可以单独优化众多编排决策中的每一个,从而充分利用性能和成本优化的潜力。Apollo的特点是:(a)应用程序和可用资源的灵活模型,以及(b)由独立代理执行的分散编排方案。这种灵活的结构不仅可以跨大量资源分发处理,还可以跨大量资源分发编排过程本身,每个资源运行一个独立的Apollo实例。再加上直接在每个Apollo实例的主机上执行部分应用程序的能力,这就通过利用数据局部性释放了成本和性能优化的巨大潜力。Apollo的效率及其在应用程序性能改进方面的潜力在一系列实验中得到了证明——包括合成和实际功能组合——Apollo在本地容器和无服务器功能之间灵活分配任务的能力使应用程序的加速显著提高(高达20倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apollo: towards an efficient distributed orchestration of serverless function compositions in the cloud-edge continuum
This paper provides a first presentation of Apollo, an orchestration framework for serverless function compositions distributed across the cloud-edge continuum. Apollo has a modular design that enables a fine-grained decomposition of the runtime orchestration (scheduling, data transmission, etc.) of applications, so that each of the numerous orchestration decisions can be optimized separately, fully exploiting the potential for the optimization of performance and costs. Apollo features (a) a flexible model of the application and the available resources and (b) a decentralized orchestration scheme carried out by independent agents. This flexible structure enables distributing not only the processing but also the orchestration process itself across a large number of resources, each running an independent Apollo instance. In combination with the ability to execute parts of the application directly on the host of each Apollo instance, this unleashes a significant potential for cost and performance optimization by leveraging data locality. Apollo's efficiency and its potential for application performance improvement are demonstrated in a series of experiments---for both synthetic and real function compositions---where Apollo's capability for flexible distribution of tasks between local containers and serverless functions enables a significant application speedup (up to 20X).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed federated service chaining for heterogeneous network environments Accord RDS Leveraging vCPU-utilization rates to select cost-efficient VMs for parallel workloads Multi-cloud serverless function composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1