O. Gul, Michel Kulhandjian, B. Kantarci, A. Touazi, C. Ellement, C. D’amours
{"title":"受损信道下射频指纹识别的细粒度增强","authors":"O. Gul, Michel Kulhandjian, B. Kantarci, A. Touazi, C. Ellement, C. D’amours","doi":"10.1109/CAMAD55695.2022.9966888","DOIUrl":null,"url":null,"abstract":"Critical infrastructures such as connected and au-tonomous vehicles, are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered as an effective technique for a wirelessly monitored or actuated critical infrastructure. For this purpose, this paper proposes a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints to determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot be considered as a feasible alternative, efficient solutions that can tackle the impact of varying channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. Numerical results point out the promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner as fingerprinting accuracy (87.94%) under the previously presented TDL/CDL augmentation can be boosted to 95.61% under previously unseen RF data instances.","PeriodicalId":166029,"journal":{"name":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fine-grained Augmentation for RF Fingerprinting under Impaired Channels\",\"authors\":\"O. Gul, Michel Kulhandjian, B. Kantarci, A. Touazi, C. Ellement, C. D’amours\",\"doi\":\"10.1109/CAMAD55695.2022.9966888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Critical infrastructures such as connected and au-tonomous vehicles, are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered as an effective technique for a wirelessly monitored or actuated critical infrastructure. For this purpose, this paper proposes a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints to determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot be considered as a feasible alternative, efficient solutions that can tackle the impact of varying channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. Numerical results point out the promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner as fingerprinting accuracy (87.94%) under the previously presented TDL/CDL augmentation can be boosted to 95.61% under previously unseen RF data instances.\",\"PeriodicalId\":166029,\"journal\":{\"name\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD55695.2022.9966888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD55695.2022.9966888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fine-grained Augmentation for RF Fingerprinting under Impaired Channels
Critical infrastructures such as connected and au-tonomous vehicles, are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered as an effective technique for a wirelessly monitored or actuated critical infrastructure. For this purpose, this paper proposes a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints to determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot be considered as a feasible alternative, efficient solutions that can tackle the impact of varying channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. Numerical results point out the promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner as fingerprinting accuracy (87.94%) under the previously presented TDL/CDL augmentation can be boosted to 95.61% under previously unseen RF data instances.