受损信道下射频指纹识别的细粒度增强

O. Gul, Michel Kulhandjian, B. Kantarci, A. Touazi, C. Ellement, C. D’amours
{"title":"受损信道下射频指纹识别的细粒度增强","authors":"O. Gul, Michel Kulhandjian, B. Kantarci, A. Touazi, C. Ellement, C. D’amours","doi":"10.1109/CAMAD55695.2022.9966888","DOIUrl":null,"url":null,"abstract":"Critical infrastructures such as connected and au-tonomous vehicles, are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered as an effective technique for a wirelessly monitored or actuated critical infrastructure. For this purpose, this paper proposes a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints to determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot be considered as a feasible alternative, efficient solutions that can tackle the impact of varying channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. Numerical results point out the promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner as fingerprinting accuracy (87.94%) under the previously presented TDL/CDL augmentation can be boosted to 95.61% under previously unseen RF data instances.","PeriodicalId":166029,"journal":{"name":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fine-grained Augmentation for RF Fingerprinting under Impaired Channels\",\"authors\":\"O. Gul, Michel Kulhandjian, B. Kantarci, A. Touazi, C. Ellement, C. D’amours\",\"doi\":\"10.1109/CAMAD55695.2022.9966888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Critical infrastructures such as connected and au-tonomous vehicles, are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered as an effective technique for a wirelessly monitored or actuated critical infrastructure. For this purpose, this paper proposes a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints to determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot be considered as a feasible alternative, efficient solutions that can tackle the impact of varying channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. Numerical results point out the promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner as fingerprinting accuracy (87.94%) under the previously presented TDL/CDL augmentation can be boosted to 95.61% under previously unseen RF data instances.\",\"PeriodicalId\":166029,\"journal\":{\"name\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD55695.2022.9966888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD55695.2022.9966888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

互联汽车和自动驾驶汽车等关键基础设施因其关键任务部署而容易受到网络攻击。为了从设计上确保安全,射频(RF)安全被认为是无线监控或驱动关键基础设施的有效技术。为此,本文提出了一种新的增强驱动的深度学习方法来分析唯一的发射器指纹,以确定用户设备或发射器的合法性。射频指纹模型容易受到各种通道和环境条件的影响,这些条件会影响机器/深度学习模型的学习性能。由于数据收集不能被视为一种可行的替代方案,因此需要有效的解决方案来解决不同渠道对学习绩效的影响。这项工作旨在通过提出一种细粒度增强方法来提高深度学习模型的学习性能,从不同的角度揭示从不同发射器收集4G, 5G和WiFi数据样本时的射频指纹问题。数值结果表明,当训练数据以特定于波形的细粒度方式增强时,射频指纹识别的性能是很有希望的,因为在之前提出的TDL/CDL增强下,指纹识别准确率(87.94%)可以提高到95.61%,而在以前未见过的射频数据实例下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-grained Augmentation for RF Fingerprinting under Impaired Channels
Critical infrastructures such as connected and au-tonomous vehicles, are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered as an effective technique for a wirelessly monitored or actuated critical infrastructure. For this purpose, this paper proposes a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints to determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot be considered as a feasible alternative, efficient solutions that can tackle the impact of varying channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. Numerical results point out the promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner as fingerprinting accuracy (87.94%) under the previously presented TDL/CDL augmentation can be boosted to 95.61% under previously unseen RF data instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Network Intrusion Detection Systems for Outlier Detection Secure Two-Way Communications Between UAVs and Control Center in IoV 5G Communication User Mobility Dataset for 5G Networks Based on GPS Geolocation Risk Estimation for a Secure & Usable User Authentication Mechanism for Mobile Passenger ID Devices Hybrid SIC with Residual Error Factor in Wireless Powered Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1