带幅度约束的信道估计:叠加训练还是常规训练?

Gongpu Wang, F. Gao, C. Tellambura
{"title":"带幅度约束的信道估计:叠加训练还是常规训练?","authors":"Gongpu Wang, F. Gao, C. Tellambura","doi":"10.1109/CWIT.2011.5872154","DOIUrl":null,"url":null,"abstract":"This paper utilizes a general superimposed training based transmission scheme that includes superimposed training and pilot symbol assisted modulation (PSAM) as special cases. The channel estimator of the scheme is the linear minimum mean square error (LMMSE) estimator. By taking into account errors of this method, we derive the closed-form lower bound of the data throughput under the constraint of limited amplitude for each symbol. Our study shows that with the constraint of total amplitude for each symbol, the conventional PSAM performs better in the high signal-to-noise ratio (SNR) region while at low SNR, the superimposed scheme performs better.","PeriodicalId":250626,"journal":{"name":"2011 12th Canadian Workshop on Information Theory","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Channel estimation with amplitude constraint: Superimposed training or conventional training ?\",\"authors\":\"Gongpu Wang, F. Gao, C. Tellambura\",\"doi\":\"10.1109/CWIT.2011.5872154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper utilizes a general superimposed training based transmission scheme that includes superimposed training and pilot symbol assisted modulation (PSAM) as special cases. The channel estimator of the scheme is the linear minimum mean square error (LMMSE) estimator. By taking into account errors of this method, we derive the closed-form lower bound of the data throughput under the constraint of limited amplitude for each symbol. Our study shows that with the constraint of total amplitude for each symbol, the conventional PSAM performs better in the high signal-to-noise ratio (SNR) region while at low SNR, the superimposed scheme performs better.\",\"PeriodicalId\":250626,\"journal\":{\"name\":\"2011 12th Canadian Workshop on Information Theory\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Canadian Workshop on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2011.5872154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2011.5872154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用了一种通用的基于叠加训练的传输方案,包括叠加训练和导频符号辅助调制(PSAM)作为特例。该方案的信道估计量为线性最小均方误差估计量。考虑到该方法的误差,我们推导出了每个符号在有限幅度约束下的数据吞吐量的封闭下界。我们的研究表明,在每个符号的总幅值的约束下,传统的PSAM在高信噪比(SNR)区域表现更好,而在低信噪比(SNR)区域,叠加方案表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel estimation with amplitude constraint: Superimposed training or conventional training ?
This paper utilizes a general superimposed training based transmission scheme that includes superimposed training and pilot symbol assisted modulation (PSAM) as special cases. The channel estimator of the scheme is the linear minimum mean square error (LMMSE) estimator. By taking into account errors of this method, we derive the closed-form lower bound of the data throughput under the constraint of limited amplitude for each symbol. Our study shows that with the constraint of total amplitude for each symbol, the conventional PSAM performs better in the high signal-to-noise ratio (SNR) region while at low SNR, the superimposed scheme performs better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparse space codes for multi-antenna systems Average outage and non-outage duration of selective decode-and-forward relaying Complexity-efficient detection for MIMO relay networks DMT analysis of multi-hop coherent FSO communication over atmospheric channels Optimizing wireless network resource allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1