自激点过程的稀疏估计及其在LGN神经模型中的应用

A. Kazemipour, B. Babadi, Min Wu
{"title":"自激点过程的稀疏估计及其在LGN神经模型中的应用","authors":"A. Kazemipour, B. Babadi, Min Wu","doi":"10.1109/GlobalSIP.2014.7032163","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of ℓ1-regularized Maximum-Likelihood estimator is investigated in sparse estimation of self-exciting processes. The underlying model includes a Generalized Linear Model (GLM) with Poisson observations and a parameter which is related to the covariates through a log-link. Kolmogorov-Smirnov and autocorrelation function tests are used as statistical goodness-of-fit measures. Results have shown a better performance of the regularized estimator both in the statistical sense and in the error norm. Application of the proposed algorithm to the LGN neuron firing data has successfully recovered the neurons' intrinsic frequencies.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sparse estimation of self-exciting point processes with application to LGN neural modeling\",\"authors\":\"A. Kazemipour, B. Babadi, Min Wu\",\"doi\":\"10.1109/GlobalSIP.2014.7032163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the performance of ℓ1-regularized Maximum-Likelihood estimator is investigated in sparse estimation of self-exciting processes. The underlying model includes a Generalized Linear Model (GLM) with Poisson observations and a parameter which is related to the covariates through a log-link. Kolmogorov-Smirnov and autocorrelation function tests are used as statistical goodness-of-fit measures. Results have shown a better performance of the regularized estimator both in the statistical sense and in the error norm. Application of the proposed algorithm to the LGN neuron firing data has successfully recovered the neurons' intrinsic frequencies.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了1-正则极大似然估计在自激过程稀疏估计中的性能。基础模型包括一个具有泊松观测值的广义线性模型(GLM)和一个通过log-link与协变量相关的参数。使用Kolmogorov-Smirnov和自相关函数检验作为统计拟合优度度量。结果表明,在统计意义上和误差范数上,正则化估计器都有较好的性能。将该算法应用于LGN神经元放电数据,成功地恢复了神经元的固有频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse estimation of self-exciting point processes with application to LGN neural modeling
In this paper, the performance of ℓ1-regularized Maximum-Likelihood estimator is investigated in sparse estimation of self-exciting processes. The underlying model includes a Generalized Linear Model (GLM) with Poisson observations and a parameter which is related to the covariates through a log-link. Kolmogorov-Smirnov and autocorrelation function tests are used as statistical goodness-of-fit measures. Results have shown a better performance of the regularized estimator both in the statistical sense and in the error norm. Application of the proposed algorithm to the LGN neuron firing data has successfully recovered the neurons' intrinsic frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competitive design of power allocation strategies for energy harvesting wireless communication systems Correction of over-exposure using color channel correlations Communications meets copula modeling: Non-standard dependence features in wireless fading channels Energy efficient and low complex wireless communication Feasibility of positive secrecy rate in wiretap interference channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1