有限仿真预算下知识发现的复杂度引导参数空间采样

Xilun Chen, L. Mathesen, Giulia Pedrielli, K. Candan
{"title":"有限仿真预算下知识发现的复杂度引导参数空间采样","authors":"Xilun Chen, L. Mathesen, Giulia Pedrielli, K. Candan","doi":"10.1109/ICBK.2019.00015","DOIUrl":null,"url":null,"abstract":"Knowledge discovery and decision making through data-and model-driven computer simulation ensembles are increasingly critical in many application domains. However, these simulation ensembles are expensive to obtain. Consequently, given a relatively small simulation budget, one needs to identify a sparse ensemble that includes the most informative simulations to help the effective exploration of the space of input parameters. In this paper, we propose a complicacy-guided parameter space sampling (CPSS) for knowledge discovery with limited simulation budgets, which relies on a novel complicacy-driven guidance mechanism to rank candidate models and a novel rank-stability based parameter space partitioning strategy to identify simulation instances to execute. The advantage of the proposed approach is that, unlike purely fit-based approaches, it avoids extensive simulations in difficult-to-fit regions of the parameter space, if the region can be explained with a much simpler model, requiring fewer simulation samples, even if with a slightly lower fit.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complicacy-Guided Parameter Space Sampling for Knowledge Discovery with Limited Simulation Budgets\",\"authors\":\"Xilun Chen, L. Mathesen, Giulia Pedrielli, K. Candan\",\"doi\":\"10.1109/ICBK.2019.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge discovery and decision making through data-and model-driven computer simulation ensembles are increasingly critical in many application domains. However, these simulation ensembles are expensive to obtain. Consequently, given a relatively small simulation budget, one needs to identify a sparse ensemble that includes the most informative simulations to help the effective exploration of the space of input parameters. In this paper, we propose a complicacy-guided parameter space sampling (CPSS) for knowledge discovery with limited simulation budgets, which relies on a novel complicacy-driven guidance mechanism to rank candidate models and a novel rank-stability based parameter space partitioning strategy to identify simulation instances to execute. The advantage of the proposed approach is that, unlike purely fit-based approaches, it avoids extensive simulations in difficult-to-fit regions of the parameter space, if the region can be explained with a much simpler model, requiring fewer simulation samples, even if with a slightly lower fit.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过数据和模型驱动的计算机仿真集成进行知识发现和决策在许多应用领域中越来越重要。然而,这些模拟集成是昂贵的获得。因此,给定一个相对较小的模拟预算,需要确定一个包含最多信息模拟的稀疏集合,以帮助有效地探索输入参数的空间。在本文中,我们提出了一种用于有限仿真预算的知识发现的复杂度引导参数空间采样(CPSS)方法,该方法依赖于一种新的复杂度驱动的指导机制对候选模型进行排序,并依赖于一种新的基于排序稳定性的参数空间划分策略来识别要执行的仿真实例。所提出的方法的优点是,与纯粹基于拟合的方法不同,它避免了在参数空间的难以拟合区域进行大量模拟,如果该区域可以用更简单的模型来解释,则需要更少的模拟样本,即使拟合程度略低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complicacy-Guided Parameter Space Sampling for Knowledge Discovery with Limited Simulation Budgets
Knowledge discovery and decision making through data-and model-driven computer simulation ensembles are increasingly critical in many application domains. However, these simulation ensembles are expensive to obtain. Consequently, given a relatively small simulation budget, one needs to identify a sparse ensemble that includes the most informative simulations to help the effective exploration of the space of input parameters. In this paper, we propose a complicacy-guided parameter space sampling (CPSS) for knowledge discovery with limited simulation budgets, which relies on a novel complicacy-driven guidance mechanism to rank candidate models and a novel rank-stability based parameter space partitioning strategy to identify simulation instances to execute. The advantage of the proposed approach is that, unlike purely fit-based approaches, it avoids extensive simulations in difficult-to-fit regions of the parameter space, if the region can be explained with a much simpler model, requiring fewer simulation samples, even if with a slightly lower fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Stage Clustering Algorithm Based on Improved K-Means and Density Peak Clustering Matrix Profile XX: Finding and Visualizing Time Series Motifs of All Lengths using the Matrix Profile A Spatial Co-location Pattern Mining Algorithm Without Distance Thresholds Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1