频域散斑记忆效应与时间反转实验稳定性

J. Garnier, K. Sølna
{"title":"频域散斑记忆效应与时间反转实验稳定性","authors":"J. Garnier, K. Sølna","doi":"10.1137/22m1470414","DOIUrl":null,"url":null,"abstract":"When waves propagate through a complex medium like the turbulent atmosphere the wave field becomes incoherent and the wave intensity forms a complex speckle pattern. In this paper we study a speckle memory effect in the frequency domain and some of its consequences. This effect means that certain properties of the speckle pattern produced by wave transmission through a randomly scattering medium is preserved when shifting the frequency of the illumination. The speckle memory effect is characterized via a detailed novel analysis of the fourth-order moment of the random paraxial Green's function at four different frequencies. We arrive at a precise characterization of the frequency memory effect and what governs the strength of the memory. As an application we quantify the statistical stability of time-reversal wave refocusing through a randomly scattering medium in the paraxial or beam regime. Time reversal refers to the situation when a transmitted wave field is recorded on a time-reversal mirror then time reversed and sent back into the complex medium. The reemitted wave field then refocuses at the original source point. We compute the mean of the refocused wave and identify a novel quantitative description of its variance in terms of the radius of the time-reversal mirror, the size of its elements, the source bandwidth and the statistics of the random medium fluctuations.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Speckle Memory Effect in the Frequency Domain and Stability in Time-Reversal Experiments\",\"authors\":\"J. Garnier, K. Sølna\",\"doi\":\"10.1137/22m1470414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When waves propagate through a complex medium like the turbulent atmosphere the wave field becomes incoherent and the wave intensity forms a complex speckle pattern. In this paper we study a speckle memory effect in the frequency domain and some of its consequences. This effect means that certain properties of the speckle pattern produced by wave transmission through a randomly scattering medium is preserved when shifting the frequency of the illumination. The speckle memory effect is characterized via a detailed novel analysis of the fourth-order moment of the random paraxial Green's function at four different frequencies. We arrive at a precise characterization of the frequency memory effect and what governs the strength of the memory. As an application we quantify the statistical stability of time-reversal wave refocusing through a randomly scattering medium in the paraxial or beam regime. Time reversal refers to the situation when a transmitted wave field is recorded on a time-reversal mirror then time reversed and sent back into the complex medium. The reemitted wave field then refocuses at the original source point. We compute the mean of the refocused wave and identify a novel quantitative description of its variance in terms of the radius of the time-reversal mirror, the size of its elements, the source bandwidth and the statistics of the random medium fluctuations.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1470414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1470414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当波在紊流大气等复杂介质中传播时,波场变得不相干,波强形成复杂的散斑模式。本文研究了频域上的散斑记忆效应及其后果。这种效应意味着,当改变照明的频率时,通过随机散射介质的波传播产生的散斑图案的某些特性得以保留。通过对随机傍轴格林函数在四个不同频率下的四阶矩的详细新颖分析来表征散斑记忆效应。我们得到了频率记忆效应的精确描述,以及控制记忆强度的因素。作为一个应用,我们量化了时间反转波通过随机散射介质在近轴或光束区重聚焦的统计稳定性。时间反转是指将透射波场记录在时间反转镜上,然后将时间反转并发回复杂介质的情况。然后重新发射的波场在原始震源点重新聚焦。我们计算了重聚焦波的平均值,并根据时间反转镜的半径、其元素的大小、源带宽和随机介质波动的统计量确定了其方差的一种新的定量描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speckle Memory Effect in the Frequency Domain and Stability in Time-Reversal Experiments
When waves propagate through a complex medium like the turbulent atmosphere the wave field becomes incoherent and the wave intensity forms a complex speckle pattern. In this paper we study a speckle memory effect in the frequency domain and some of its consequences. This effect means that certain properties of the speckle pattern produced by wave transmission through a randomly scattering medium is preserved when shifting the frequency of the illumination. The speckle memory effect is characterized via a detailed novel analysis of the fourth-order moment of the random paraxial Green's function at four different frequencies. We arrive at a precise characterization of the frequency memory effect and what governs the strength of the memory. As an application we quantify the statistical stability of time-reversal wave refocusing through a randomly scattering medium in the paraxial or beam regime. Time reversal refers to the situation when a transmitted wave field is recorded on a time-reversal mirror then time reversed and sent back into the complex medium. The reemitted wave field then refocuses at the original source point. We compute the mean of the refocused wave and identify a novel quantitative description of its variance in terms of the radius of the time-reversal mirror, the size of its elements, the source bandwidth and the statistics of the random medium fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiscale Analysis for Dynamic Contact Angle Hysteresis on Rough Surfaces Metropolis Crystal Surface Dynamics in the Rough Scaling Limit: From Local Equilibrium to Semi-Empirical PDE QM/MM Methods for Crystalline Defects. Part 3: Machine-Learned MM Models A Diffuse-Domain Phase-Field Lattice Boltzmann Method for Two-Phase Flows in Complex Geometries Homogenization of the Stokes System in a Domain with an Oscillating Boundary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1