基于Salp群算法的最大熵聚类混合方法

Jiongzhi Liu, Shengbing Xu, Wei Cai, Yinyun Lin
{"title":"基于Salp群算法的最大熵聚类混合方法","authors":"Jiongzhi Liu, Shengbing Xu, Wei Cai, Yinyun Lin","doi":"10.1109/ISCEIC51027.2020.00030","DOIUrl":null,"url":null,"abstract":"To address the problem that Maximum Entropy Clustering Algorithm(MEC) is sensitive to the initial clustering centers, we propose a hybrid approach for Maximum Entropy Clustering using Salp Swarm Algorithm (MEC-SSA). First, there are m data samples that are randomly selected as salp populations to get the optimal initial cluster centers. Secondly, the optimal initial clustering centers of MEC are obtained by SSA using DB index as its fitness function. Finally, we can get the better cluster centers by MEC approach. MEC-SSA can alleviate the sensitivity of MEC for initial clustering centers. Further experiments conducted in UCI data show that SSA helps to improve the performance of MEC.","PeriodicalId":249521,"journal":{"name":"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach for Maximum Entropy clustering using Salp Swarm Algorithm\",\"authors\":\"Jiongzhi Liu, Shengbing Xu, Wei Cai, Yinyun Lin\",\"doi\":\"10.1109/ISCEIC51027.2020.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problem that Maximum Entropy Clustering Algorithm(MEC) is sensitive to the initial clustering centers, we propose a hybrid approach for Maximum Entropy Clustering using Salp Swarm Algorithm (MEC-SSA). First, there are m data samples that are randomly selected as salp populations to get the optimal initial cluster centers. Secondly, the optimal initial clustering centers of MEC are obtained by SSA using DB index as its fitness function. Finally, we can get the better cluster centers by MEC approach. MEC-SSA can alleviate the sensitivity of MEC for initial clustering centers. Further experiments conducted in UCI data show that SSA helps to improve the performance of MEC.\",\"PeriodicalId\":249521,\"journal\":{\"name\":\"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCEIC51027.2020.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC51027.2020.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对最大熵聚类算法(MEC)对初始聚类中心敏感的问题,提出了一种基于Salp群算法(MEC- ssa)的最大熵聚类混合算法。首先,随机选择m个数据样本作为salp种群,以获得最优初始聚类中心。其次,以DB指数为适应度函数,采用SSA方法得到MEC的最优初始聚类中心;最后,通过MEC方法得到较好的集群中心。MEC- ssa可以缓解MEC对初始聚类中心的敏感性。在UCI数据中进行的进一步实验表明,SSA有助于提高MEC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid approach for Maximum Entropy clustering using Salp Swarm Algorithm
To address the problem that Maximum Entropy Clustering Algorithm(MEC) is sensitive to the initial clustering centers, we propose a hybrid approach for Maximum Entropy Clustering using Salp Swarm Algorithm (MEC-SSA). First, there are m data samples that are randomly selected as salp populations to get the optimal initial cluster centers. Secondly, the optimal initial clustering centers of MEC are obtained by SSA using DB index as its fitness function. Finally, we can get the better cluster centers by MEC approach. MEC-SSA can alleviate the sensitivity of MEC for initial clustering centers. Further experiments conducted in UCI data show that SSA helps to improve the performance of MEC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical of Loop closing Operation Based on Multi-dimensional Index System Research on fat-tail phenomenon via artificial stock market modeling Print Counting, Status Inspection and Type Identification of Printing Devices based on Smart Sensor A Secure Real-time Internal and External Network Data Exchange Method Based on Web Service Protocol Research on Classification Optimization Algorithm of Rotor to Stator Rub-impact Fault Using FGSO-SVM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1