基于模糊协调法的气动小车跷跷板系统平衡控制

Jonqlan Lin, S.-Y. Guo, Julian Chang
{"title":"基于模糊协调法的气动小车跷跷板系统平衡控制","authors":"Jonqlan Lin, S.-Y. Guo, Julian Chang","doi":"10.1109/CCA.2011.6044482","DOIUrl":null,"url":null,"abstract":"The objectives of the research are to develop a novel balancing approach for a novel SAMS model which is called cart-seesaw system. The investigation is using fuzzy logic rule incorporates fuzzy coordinator compensation to drive the sliding carts and keep the seesaw angle close to zero in the equilibrium state. Experimental results indicate that utilizing the proposed control methodology significantly enhances the performance. Moreover, the performance of fuzzy balancing controller (FBC) is not significantly affected by changes the environmental parameters, demonstrating the effectiveness of the fuzzy controller in minimizing the seesaw tilt angle in the time domain although the system is caused by unpredicted loading variation. Moreover, the experimental results are included to indicate the effectiveness and robustness of the proposed fuzzy control methodology. While this work is motivated by an exploration cart-seesaw balancing problem, then the results of this study can be applied to underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. Furthermore, development the proposed software/hardware platform can be beneficial for standardizing laboratory equipment, and the development of amusement apparatus.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing control for pneumatic cart-seesaw system by fuzzy coordination methodology\",\"authors\":\"Jonqlan Lin, S.-Y. Guo, Julian Chang\",\"doi\":\"10.1109/CCA.2011.6044482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objectives of the research are to develop a novel balancing approach for a novel SAMS model which is called cart-seesaw system. The investigation is using fuzzy logic rule incorporates fuzzy coordinator compensation to drive the sliding carts and keep the seesaw angle close to zero in the equilibrium state. Experimental results indicate that utilizing the proposed control methodology significantly enhances the performance. Moreover, the performance of fuzzy balancing controller (FBC) is not significantly affected by changes the environmental parameters, demonstrating the effectiveness of the fuzzy controller in minimizing the seesaw tilt angle in the time domain although the system is caused by unpredicted loading variation. Moreover, the experimental results are included to indicate the effectiveness and robustness of the proposed fuzzy control methodology. While this work is motivated by an exploration cart-seesaw balancing problem, then the results of this study can be applied to underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. Furthermore, development the proposed software/hardware platform can be beneficial for standardizing laboratory equipment, and the development of amusement apparatus.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究的目的是为一种新型的SAMS模型开发一种新的平衡方法,该模型被称为推车跷跷板系统。研究了利用模糊逻辑规则结合模糊协调器补偿来驱动滑车,使滑车在平衡状态下的跷跷板角度接近于零。实验结果表明,采用该控制方法可显著提高系统性能。此外,模糊平衡控制器(FBC)的性能不受环境参数变化的显著影响,证明了模糊控制器在系统由不可预测的负载变化引起的情况下,在时域上最小化跷跷板倾斜角度的有效性。实验结果表明了所提出的模糊控制方法的有效性和鲁棒性。虽然这项工作的动机是探索小车跷跷板平衡问题,但本研究的结果可以应用于欠驱动机械系统,其中配置空间的维度超过控制输入空间的维度。此外,开发所提出的软件/硬件平台可以有利于实验室设备的标准化,以及游乐设备的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balancing control for pneumatic cart-seesaw system by fuzzy coordination methodology
The objectives of the research are to develop a novel balancing approach for a novel SAMS model which is called cart-seesaw system. The investigation is using fuzzy logic rule incorporates fuzzy coordinator compensation to drive the sliding carts and keep the seesaw angle close to zero in the equilibrium state. Experimental results indicate that utilizing the proposed control methodology significantly enhances the performance. Moreover, the performance of fuzzy balancing controller (FBC) is not significantly affected by changes the environmental parameters, demonstrating the effectiveness of the fuzzy controller in minimizing the seesaw tilt angle in the time domain although the system is caused by unpredicted loading variation. Moreover, the experimental results are included to indicate the effectiveness and robustness of the proposed fuzzy control methodology. While this work is motivated by an exploration cart-seesaw balancing problem, then the results of this study can be applied to underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. Furthermore, development the proposed software/hardware platform can be beneficial for standardizing laboratory equipment, and the development of amusement apparatus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suppression of general decoherence in arbitrary n-level atom in Ξ-configuration under a bang-bang control Interval observer for Chlorella vulgaris culture in a photobioreactor Miniaturizing the spherical sundial: A hemispherical sensor for orientation and positioning with respect to point sources of light Robust gain-scheduled control of dc-dc converters: An LMI approach Slip measurement and vehicle control for leg/wheel mobile robots using caster type odometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1