{"title":"ContextPlay:评估用户对上下文感知音乐推荐的控制","authors":"Yucheng Jin, N. Htun, N. Tintarev, K. Verbert","doi":"10.1145/3320435.3320445","DOIUrl":null,"url":null,"abstract":"Music preferences are likely to depend on contextual characteristics such as location and activity. However, most recommender systems do not allow users to adapt recommendations to their current context. We therefore built ContextPlay, a context-aware music recommender that enables user control for both contextual characteristics and music preferences. By conducting a mixed-design study (N=114) with four typical scenarios of music listening, we investigate the effect of controlling contextual characteristics in a music recommender system on four aspects: perceived quality, diversity, effectiveness, and cognitive load. Compared to our baseline which only allows to specify music preferences, having additional control for context leads to higher perceived quality and does not increase cognitive load. We also find that the contexts of mood, weather, and location tend to influence user perception of the system. Moreover, we found that users are more likely to modify contexts and their profile during relaxing activities.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"ContextPlay: Evaluating User Control for Context-Aware Music Recommendation\",\"authors\":\"Yucheng Jin, N. Htun, N. Tintarev, K. Verbert\",\"doi\":\"10.1145/3320435.3320445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music preferences are likely to depend on contextual characteristics such as location and activity. However, most recommender systems do not allow users to adapt recommendations to their current context. We therefore built ContextPlay, a context-aware music recommender that enables user control for both contextual characteristics and music preferences. By conducting a mixed-design study (N=114) with four typical scenarios of music listening, we investigate the effect of controlling contextual characteristics in a music recommender system on four aspects: perceived quality, diversity, effectiveness, and cognitive load. Compared to our baseline which only allows to specify music preferences, having additional control for context leads to higher perceived quality and does not increase cognitive load. We also find that the contexts of mood, weather, and location tend to influence user perception of the system. Moreover, we found that users are more likely to modify contexts and their profile during relaxing activities.\",\"PeriodicalId\":254537,\"journal\":{\"name\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3320435.3320445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ContextPlay: Evaluating User Control for Context-Aware Music Recommendation
Music preferences are likely to depend on contextual characteristics such as location and activity. However, most recommender systems do not allow users to adapt recommendations to their current context. We therefore built ContextPlay, a context-aware music recommender that enables user control for both contextual characteristics and music preferences. By conducting a mixed-design study (N=114) with four typical scenarios of music listening, we investigate the effect of controlling contextual characteristics in a music recommender system on four aspects: perceived quality, diversity, effectiveness, and cognitive load. Compared to our baseline which only allows to specify music preferences, having additional control for context leads to higher perceived quality and does not increase cognitive load. We also find that the contexts of mood, weather, and location tend to influence user perception of the system. Moreover, we found that users are more likely to modify contexts and their profile during relaxing activities.