利用联想记忆神经网络进行地图学习

C. Chen, X. Xu, A. McAuley
{"title":"利用联想记忆神经网络进行地图学习","authors":"C. Chen, X. Xu, A. McAuley","doi":"10.1109/IJCNN.1991.155464","DOIUrl":null,"url":null,"abstract":"Map learning using associative memory is presented. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. Training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning a city map is given.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Map learning using associative memory neural network\",\"authors\":\"C. Chen, X. Xu, A. McAuley\",\"doi\":\"10.1109/IJCNN.1991.155464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Map learning using associative memory is presented. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. Training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning a city map is given.<<ETX>>\",\"PeriodicalId\":250037,\"journal\":{\"name\":\"IEEE 1991 International Conference on Systems Engineering\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1991 International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1991.155464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.155464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了利用联想记忆进行地图学习的方法。给定一个待访问的源位置和目标位置及其关联的访问路径,构建了一个能够记忆和回忆所有可能的成对位置组合的联想记忆神经网络。第k个最近邻变换用于将输入的成对位置转换为表示地图中所有位置之间的相邻信息的向量形式。从关联组的协方差矩阵的特征向量与输入向量的线性组合中选择训练模式。用选择的变换后的训练向量对网络进行训练,得到图中任意两点的最佳路径。给出了一个学习城市地图的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Map learning using associative memory neural network
Map learning using associative memory is presented. Given a source location and a destination location to be visited and its associated visiting path, an associative memory neural network which can remember and recall all possible paired-location combinations is constructed. Kth nearest neighbor transformation is used to transfer the input paired locations to a vector form indicating the neighboring information among all the locations in the map. Training patterns are selected from the linear combination of the eigenvector of the covariance matrix of the associative group and the input vectors. Training the network with the selected transformed training vectors, the best path of any two points in the map can be obtained. An example of learning a city map is given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and simulation of a heat exchanger Multidisciplinary modeling and design of a space system Robust stabilization of an aero-elastic system Inductive character learning and classification with genetic algorithms Determining bus arbitration policies and data transfer techniques for multiprocessor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1