与机器人不同,人类的内力和操纵力是耦合的

Fan Gao, M. Latash, V. Zatsiorsky
{"title":"与机器人不同,人类的内力和操纵力是耦合的","authors":"Fan Gao, M. Latash, V. Zatsiorsky","doi":"10.1109/ICORR.2005.1501129","DOIUrl":null,"url":null,"abstract":"Internal force is defined as a set of contact forces which does not perturb object equilibrium. The internal forces cancel each other and therefore do not contribute to the resultant (manipulation) force acting upon the object. Mathematically, the internal and manipulation forces are independent. Hence they can be controlled independently and corresponding controllers have been implemented in robotic manipulators. The purposes of this study are to examine whether in humans internal force is coupled with the manipulation force and what kind of grasping strategy the performers utilize. The subjects (n=6) were instructed to make cyclic arm movements with a customized manipulandum and the orientation and the movement direction of the manipulandum were varied. Two major grasping patterns were demonstrated: symmetric grasping synergy when the manipulation force is parallel to finger-object interface; and reciprocal changes of forces when the manipulation force is orthogonal to digit-object interface. In contrast to robotic gripper where controls of internal force and manipulation force are decoupled, in humans the internal and manipulation forces are coupled.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In contrast to robots, in humans internal and manipulation forces are coupled\",\"authors\":\"Fan Gao, M. Latash, V. Zatsiorsky\",\"doi\":\"10.1109/ICORR.2005.1501129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal force is defined as a set of contact forces which does not perturb object equilibrium. The internal forces cancel each other and therefore do not contribute to the resultant (manipulation) force acting upon the object. Mathematically, the internal and manipulation forces are independent. Hence they can be controlled independently and corresponding controllers have been implemented in robotic manipulators. The purposes of this study are to examine whether in humans internal force is coupled with the manipulation force and what kind of grasping strategy the performers utilize. The subjects (n=6) were instructed to make cyclic arm movements with a customized manipulandum and the orientation and the movement direction of the manipulandum were varied. Two major grasping patterns were demonstrated: symmetric grasping synergy when the manipulation force is parallel to finger-object interface; and reciprocal changes of forces when the manipulation force is orthogonal to digit-object interface. In contrast to robotic gripper where controls of internal force and manipulation force are decoupled, in humans the internal and manipulation forces are coupled.\",\"PeriodicalId\":131431,\"journal\":{\"name\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2005.1501129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

内力定义为不破坏物体平衡的一系列接触力。内力相互抵消,因此对作用在物体上的合力(操纵力)没有贡献。在数学上,内力和操纵力是独立的。因此,它们可以独立控制,相应的控制器已经在机器人操作器中实现。本研究的目的是研究人类的内力是否与操纵力相耦合,以及表演者使用什么样的抓取策略。指导被试(n=6)使用定制的机械手进行手臂循环运动,改变机械手的姿态和运动方向。研究了两种主要的抓取模式:当操纵力平行于指-物界面时的对称抓取协同;以及当操纵力与数字物体界面正交时力的倒数变化。机械手的内力和操纵力的控制是分离的,而人的内力和操纵力是耦合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In contrast to robots, in humans internal and manipulation forces are coupled
Internal force is defined as a set of contact forces which does not perturb object equilibrium. The internal forces cancel each other and therefore do not contribute to the resultant (manipulation) force acting upon the object. Mathematically, the internal and manipulation forces are independent. Hence they can be controlled independently and corresponding controllers have been implemented in robotic manipulators. The purposes of this study are to examine whether in humans internal force is coupled with the manipulation force and what kind of grasping strategy the performers utilize. The subjects (n=6) were instructed to make cyclic arm movements with a customized manipulandum and the orientation and the movement direction of the manipulandum were varied. Two major grasping patterns were demonstrated: symmetric grasping synergy when the manipulation force is parallel to finger-object interface; and reciprocal changes of forces when the manipulation force is orthogonal to digit-object interface. In contrast to robotic gripper where controls of internal force and manipulation force are decoupled, in humans the internal and manipulation forces are coupled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual input device for self-assisted control of a virtual pendulum Realizing a posture-based wearable antigravity muscles support system for lower extremities Adjustable robotic tendon using a 'Jack Spring'/spl trade/ A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing A motorized gravity compensation mechanism used for active rehabilitation of upper limbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1