一种基于FCM和高斯隶属函数的模糊模型识别新方法

Yaxue Ren, Jinfeng Lv, Fucai Liu
{"title":"一种基于FCM和高斯隶属函数的模糊模型识别新方法","authors":"Yaxue Ren, Jinfeng Lv, Fucai Liu","doi":"10.23919/CCC50068.2020.9188699","DOIUrl":null,"url":null,"abstract":"To solve the problem of fuzzy identification of nonlinear systems, a novel fuzzy identification method based on fuzzy c-means clustering (FCM) algorithm and Gaussian function is proposed. Firstly, fuzzy clustering algorithm is used to divide the input space to obtain the clustering center, then the clustering center is used as the gaussian function center to determine the membership function to obtain the premise parameters of the fuzzy model, and the conclusion parameters of the fuzzy model are identified by recursive least squares (RLS). Finally, three simulation examples are given to verify the effectiveness of the proposed method in identifying T-S fuzzy model.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Fuzzy Model Identification Approach Based on FCM and Gaussian Membership Function\",\"authors\":\"Yaxue Ren, Jinfeng Lv, Fucai Liu\",\"doi\":\"10.23919/CCC50068.2020.9188699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of fuzzy identification of nonlinear systems, a novel fuzzy identification method based on fuzzy c-means clustering (FCM) algorithm and Gaussian function is proposed. Firstly, fuzzy clustering algorithm is used to divide the input space to obtain the clustering center, then the clustering center is used as the gaussian function center to determine the membership function to obtain the premise parameters of the fuzzy model, and the conclusion parameters of the fuzzy model are identified by recursive least squares (RLS). Finally, three simulation examples are given to verify the effectiveness of the proposed method in identifying T-S fuzzy model.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9188699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解决非线性系统的模糊辨识问题,提出了一种基于模糊c均值聚类(FCM)算法和高斯函数的模糊辨识方法。首先利用模糊聚类算法对输入空间进行划分得到聚类中心,然后将聚类中心作为高斯函数中心确定隶属函数,得到模糊模型的前提参数,最后利用递推最小二乘(RLS)对模糊模型的结论参数进行识别。最后,给出了三个仿真实例,验证了该方法在T-S模糊模型识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Fuzzy Model Identification Approach Based on FCM and Gaussian Membership Function
To solve the problem of fuzzy identification of nonlinear systems, a novel fuzzy identification method based on fuzzy c-means clustering (FCM) algorithm and Gaussian function is proposed. Firstly, fuzzy clustering algorithm is used to divide the input space to obtain the clustering center, then the clustering center is used as the gaussian function center to determine the membership function to obtain the premise parameters of the fuzzy model, and the conclusion parameters of the fuzzy model are identified by recursive least squares (RLS). Finally, three simulation examples are given to verify the effectiveness of the proposed method in identifying T-S fuzzy model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1