基于梯度的区域控制经济模型预测控制器在天然气管网中的应用

M. A. Martins
{"title":"基于梯度的区域控制经济模型预测控制器在天然气管网中的应用","authors":"M. A. Martins","doi":"10.23880/ppej-16000342","DOIUrl":null,"url":null,"abstract":"This paper addresses a one-layer model predictive control (MPC) strategy that simultaneously deals with safety and economic issues for natural gas networks (NGN). The simulations consider a nonlinear pipeline model based on the non-isothermal flow and non-deal gas behavior. The proposed NGN-oriented MPC strategy uses an adaptive scheme that relies upon the successive linearization of the nonlinear NGN model and the surge prevention constraints of the compression stations, incorporated into the control law to avoid unsafe operating conditions. The controller has the guarantee of feasibility by incorporating a suitable set of slack variables into its formulation, mainly in the surge avoidance constraints. At the same time, the resulting control law is more flexible by adopting output zone tracking cases rather than setpoint tracking. The simulated study, aiming at minimizing the power consumption of the centrifugal compressors, sought to control the pressures in the consumer nodes of NGN into a predefined zone while meeting the process constraints. In all scenarios of zone changes, the controller could lead the controlled outputs in their respective zones, accommodating the operation in steady states with a minimal power consumption of three compression stations considered in NGN. By respecting the surge prevention constraints flexibly, and using the slack variables when necessary, immediately after perturbation, the proposed NGN-oriented adaptive zone MPC controller has proved to be a suitable tool to manage the NGN with control performance, operational safe and economic competitivity.","PeriodicalId":282073,"journal":{"name":"Petroleum & Petrochemical Engineering Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gradient-Based Economic Model Predictive Controller with Zone Control Scheme Applied to Natural Gas Pipeline Networks\",\"authors\":\"M. A. Martins\",\"doi\":\"10.23880/ppej-16000342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a one-layer model predictive control (MPC) strategy that simultaneously deals with safety and economic issues for natural gas networks (NGN). The simulations consider a nonlinear pipeline model based on the non-isothermal flow and non-deal gas behavior. The proposed NGN-oriented MPC strategy uses an adaptive scheme that relies upon the successive linearization of the nonlinear NGN model and the surge prevention constraints of the compression stations, incorporated into the control law to avoid unsafe operating conditions. The controller has the guarantee of feasibility by incorporating a suitable set of slack variables into its formulation, mainly in the surge avoidance constraints. At the same time, the resulting control law is more flexible by adopting output zone tracking cases rather than setpoint tracking. The simulated study, aiming at minimizing the power consumption of the centrifugal compressors, sought to control the pressures in the consumer nodes of NGN into a predefined zone while meeting the process constraints. In all scenarios of zone changes, the controller could lead the controlled outputs in their respective zones, accommodating the operation in steady states with a minimal power consumption of three compression stations considered in NGN. By respecting the surge prevention constraints flexibly, and using the slack variables when necessary, immediately after perturbation, the proposed NGN-oriented adaptive zone MPC controller has proved to be a suitable tool to manage the NGN with control performance, operational safe and economic competitivity.\",\"PeriodicalId\":282073,\"journal\":{\"name\":\"Petroleum & Petrochemical Engineering Journal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum & Petrochemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/ppej-16000342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum & Petrochemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/ppej-16000342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种同时处理天然气网络安全和经济问题的单层模型预测控制(MPC)策略。模拟考虑了基于非等温流动和非交易气体行为的非线性管道模型。提出的面向NGN的MPC策略采用一种自适应方案,该方案依赖于非线性NGN模型的连续线性化和压缩站的喘振预防约束,并将其纳入控制律以避免不安全的运行条件。该控制器通过引入一组合适的松弛变量来保证其可行性,主要体现在避浪约束方面。同时,采用输出区域跟踪而不是设定值跟踪,使控制律更加灵活。仿真研究以离心压缩机功耗最小为目标,在满足工艺约束的前提下,将NGN消费节点压力控制在预定义区域内。在所有区域变化的情况下,控制器都可以将被控输出引入各自的区域,以最小的功率消耗适应NGN中考虑的三个压缩站的稳态运行。通过灵活地考虑防浪涌约束,并在扰动发生后立即使用必要的松弛变量,所提出的面向NGN的自适应区域MPC控制器被证明是一种具有控制性能、运行安全性和经济竞争力的管理NGN的合适工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Gradient-Based Economic Model Predictive Controller with Zone Control Scheme Applied to Natural Gas Pipeline Networks
This paper addresses a one-layer model predictive control (MPC) strategy that simultaneously deals with safety and economic issues for natural gas networks (NGN). The simulations consider a nonlinear pipeline model based on the non-isothermal flow and non-deal gas behavior. The proposed NGN-oriented MPC strategy uses an adaptive scheme that relies upon the successive linearization of the nonlinear NGN model and the surge prevention constraints of the compression stations, incorporated into the control law to avoid unsafe operating conditions. The controller has the guarantee of feasibility by incorporating a suitable set of slack variables into its formulation, mainly in the surge avoidance constraints. At the same time, the resulting control law is more flexible by adopting output zone tracking cases rather than setpoint tracking. The simulated study, aiming at minimizing the power consumption of the centrifugal compressors, sought to control the pressures in the consumer nodes of NGN into a predefined zone while meeting the process constraints. In all scenarios of zone changes, the controller could lead the controlled outputs in their respective zones, accommodating the operation in steady states with a minimal power consumption of three compression stations considered in NGN. By respecting the surge prevention constraints flexibly, and using the slack variables when necessary, immediately after perturbation, the proposed NGN-oriented adaptive zone MPC controller has proved to be a suitable tool to manage the NGN with control performance, operational safe and economic competitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Absorption of Crude Oil from Water Surface Using Shells of Periwinkle, Thales (Ngolo) and Oyster Exploitation and Development of Oil/Gas Marginal Fields in Nigeria and Romania: Technology, Rising Market Development Challenges & Sustainable Energy Transition Development of a New Correlation for Predicting Initial Water Saturation in Carbonate Reservoirs Review of the Technical and Economic Evaluation of the Use of Means of Simultaneous Independent Operation for Solving Technical Problems Advancing Reservoir Performance Optimization through UserFriendly Excel VBA Software Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1