{"title":"异构虚拟网络功能执行框架的性能优势研究","authors":"H. U. Adoga, Yehia El-khatib, D. Pezaros","doi":"10.1109/NetSoft54395.2022.9844115","DOIUrl":null,"url":null,"abstract":"As the adoption of softwarized network functions (NFs) keeps growing, we evaluate the performance benefits of SDN-aware data-plane implementations when compared to diverse acceleration and process-based NFV frameworks. Typical network functions have been implemented using four alternative frameworks scenarios, an SDN-aware software switch (data-plane), a virtual machine (VM), a Data-Plane Development Kit (DPDK) NF, and a containerized NF. Results from our experiments show that the data-plane NF implementation yields much higher bandwidth and packets per second (pps) rates. The bandwidth obtained is 14% more than the user-space scenario while retaining CPU utilization. The DPDK NFs in our evaluation can process packets at a much higher rate for 64B packets, on a single CPU core, which is 7 times higher than the containerized NF implementations, also tied to a single core. Our results also show the performance gains from deploying virtual network functions on heterogeneous frameworks.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Performance Benefits of Heterogeneous Virtual Network Function Execution Frameworks\",\"authors\":\"H. U. Adoga, Yehia El-khatib, D. Pezaros\",\"doi\":\"10.1109/NetSoft54395.2022.9844115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the adoption of softwarized network functions (NFs) keeps growing, we evaluate the performance benefits of SDN-aware data-plane implementations when compared to diverse acceleration and process-based NFV frameworks. Typical network functions have been implemented using four alternative frameworks scenarios, an SDN-aware software switch (data-plane), a virtual machine (VM), a Data-Plane Development Kit (DPDK) NF, and a containerized NF. Results from our experiments show that the data-plane NF implementation yields much higher bandwidth and packets per second (pps) rates. The bandwidth obtained is 14% more than the user-space scenario while retaining CPU utilization. The DPDK NFs in our evaluation can process packets at a much higher rate for 64B packets, on a single CPU core, which is 7 times higher than the containerized NF implementations, also tied to a single core. Our results also show the performance gains from deploying virtual network functions on heterogeneous frameworks.\",\"PeriodicalId\":125799,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft54395.2022.9844115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Performance Benefits of Heterogeneous Virtual Network Function Execution Frameworks
As the adoption of softwarized network functions (NFs) keeps growing, we evaluate the performance benefits of SDN-aware data-plane implementations when compared to diverse acceleration and process-based NFV frameworks. Typical network functions have been implemented using four alternative frameworks scenarios, an SDN-aware software switch (data-plane), a virtual machine (VM), a Data-Plane Development Kit (DPDK) NF, and a containerized NF. Results from our experiments show that the data-plane NF implementation yields much higher bandwidth and packets per second (pps) rates. The bandwidth obtained is 14% more than the user-space scenario while retaining CPU utilization. The DPDK NFs in our evaluation can process packets at a much higher rate for 64B packets, on a single CPU core, which is 7 times higher than the containerized NF implementations, also tied to a single core. Our results also show the performance gains from deploying virtual network functions on heterogeneous frameworks.