{"title":"不确定性模型在冠状动脉疾病应激心电图分类中的应用","authors":"S. Arafat, M. Dohrmann, M. Skubic","doi":"10.1109/CIMA.2005.1662362","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of combined uncertainty methods in the diagnosis of coronary artery disease using ECG stress signals. Combined uncertainty computes a composite of two types of uncertainties, fuzzy and probabilistic. First, we introduce basic definitions for fuzzy and probabilistic uncertainty types. Next, the ECG analysis problem is discussed in the context of classifying ECG signals using traditional methods. Three examples of models that compute fuzzy, probabilistic, and combined uncertainty models are introduced in the next section. Our experimental results show that models developed by combined uncertainty produce better results, in terms of ECG signals correct classification percentage, compared to those computed using only fuzzy or probabilistic uncertainty","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Classification of coronary artery disease stress ECGs using uncertainty modeling\",\"authors\":\"S. Arafat, M. Dohrmann, M. Skubic\",\"doi\":\"10.1109/CIMA.2005.1662362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the use of combined uncertainty methods in the diagnosis of coronary artery disease using ECG stress signals. Combined uncertainty computes a composite of two types of uncertainties, fuzzy and probabilistic. First, we introduce basic definitions for fuzzy and probabilistic uncertainty types. Next, the ECG analysis problem is discussed in the context of classifying ECG signals using traditional methods. Three examples of models that compute fuzzy, probabilistic, and combined uncertainty models are introduced in the next section. Our experimental results show that models developed by combined uncertainty produce better results, in terms of ECG signals correct classification percentage, compared to those computed using only fuzzy or probabilistic uncertainty\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of coronary artery disease stress ECGs using uncertainty modeling
This paper discusses the use of combined uncertainty methods in the diagnosis of coronary artery disease using ECG stress signals. Combined uncertainty computes a composite of two types of uncertainties, fuzzy and probabilistic. First, we introduce basic definitions for fuzzy and probabilistic uncertainty types. Next, the ECG analysis problem is discussed in the context of classifying ECG signals using traditional methods. Three examples of models that compute fuzzy, probabilistic, and combined uncertainty models are introduced in the next section. Our experimental results show that models developed by combined uncertainty produce better results, in terms of ECG signals correct classification percentage, compared to those computed using only fuzzy or probabilistic uncertainty